ORIGINAL_ARTICLE
Upper and lower $\alpha(\mu_{X},\mu_{Y})$-continuous multifunctions
In this paper, a new class of multifunctions, called generalized $\alpha(\mu_{X},\mu_{Y})$-continuous multifunctions, has been dened and studied. Some characterizations and several properties concerning generalized $\alpha(\mu_{X},\mu_{Y})$-continuous multifunctions are obtained. The relationships between generalized $\alpha(\mu_{X},\mu_{Y})$-continuous multifunctions and some known concepts are also discussed.
http://jlta.iauctb.ac.ir/article_513810_ee0fd50351b16789fd9107c0732b9cab.pdf
2015-04-01T11:23:20
2018-04-23T11:23:20
1
9
Generalized open sets
multifunction
generalized continuity
M.
Akdag
true
1
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
AUTHOR
F.
Erol
feerol@cumhuriyet.edu.tr
true
2
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY
LEAD_AUTHOR
[1] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351-357, 2002.
1
[2] A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47, 91-96, 2004.
2
[3] A. Csaszar, ”δ−and θ−modifications of generalized topologies,” Acta Mathematica Hungarica, vol. 120, pp. 274-279, 2008.
3
[4] A. Csaszar, ”Product of generalized topologies,” Acta Mathematica Hungarica, vol. 123, no:1-2, pp. 127-132, 2009.
4
[5] A. Csaszar, γ-connected sets, Acta Math. Hungar., 101, 273-279, 2003.
5
[6] A. Csaszar, ”Further remarks on the formula for γ−interior,” Acta Mathematica Hungarica, vol. 113, no: 4, pp. 325-332, 2006.
6
[7] A. Csaszar, ”Generalized open sets in generalized topologies,” Acta Mathematica Hungarica, vol. 106,no: 1-2 pp. 53-66, 2005.
7
[8] A. Kanibir and I. L. Reilly, ”Generalized continuity for multifunctions, ” Acta Mathematica Hungarica, vol. 122, no . 3, pp. 283-292, 2009.
8
[9] A. S. Mashour, M. E. Abd El-Monsef, and S. N. El-Deeb, ”On precontinuous and weakprecontinuous functions, ”Proceedings of the Mathematical and Physical Society of Egypt, pp. 47-53, 1982.
9
[10] C. Berge, Topological Spaces, Macmillian, New York, 1963. English translation by E. M. Patterson of Espaces Topologiques, Fonctions Multivoques, Dunod, Paris, 1959.
10
[11] C. Cao, J. Yang, W. Wang, B. Wang, Some generalized continuities functions on generalized topological spaces, Hacettepe Jou. of Math. and Stat., 42(2), 159-163, 2013.
11
[12] C. Boonpok, ”On upper and Lower β (µX, µY )- Continuous multifunctions”, Int. J. of Math. and Math. Sci., 2012 Doi: 10. 1155/2012/931656.
12
[13] D. Andrijevic, ”Semipreopen sets, ” Matematicki Vesnik, vol. 38, no. 2, pp. 24-32, 1986.
13
[14] J. P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
14
[15] M. Akdag and F. Erol, Upper and Lower P re(µX, µY ) Continuous Multifunctions, Scientific Journal of Mathematics Research Oct. 2014, Vol. 4 Iss. 5, PP. 46-52.
15
[16] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, ”β-open sets and β-continuous mapping, ”Bulletin of the Faculty of Science. Assiult Universty, vol. 12, no. 1, pp. 77-90, 1983.
16
[17] N. Levine, ”Semi-open sets and semi-contiuity in topological spaces, ” The American Mathematical Montly, vol. 70, pp. 36-41, 1963.
17
[18] O. Njastad, On some classes of nearly open sets, Pacific Journal of Math., vol.15, 961-870, 1965.
18
[19] R. Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124, 363-369, 2009.
19
[20] R. Shen, A note on generalized connectedness, Acta Math. Hungar., 122, 231-235, 2009.
20
[21] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hun., 128, 299-306, 2010.
21
ORIGINAL_ARTICLE
Characterization of $G_2(q)$, where $2 < q \equiv 1(mod\ 3)$ by order components
In this paper we will prove that the simple group $G_2(q)$, where $2 < q \equiv 1(mod3)$ is recognizable by the set of its order components, also other word we prove that if $G$ is a finite group with $OC(G)=OC(G_2(q))$, then $G$ is isomorphic to $G_2(q)$.
http://jlta.iauctb.ac.ir/article_513811_9eba341c74bd3045dee87b9bd0cdef4e.pdf
2015-04-01T11:23:20
2018-04-23T11:23:20
11
23
prime graph
order component
linear group
P.
Nosratpour
true
1
Department of Mathematics, Ilam Branch,
Islamic Azad University, Ilam, Iran
Department of Mathematics, Ilam Branch,
Islamic Azad University, Ilam, Iran
Department of Mathematics, Ilam Branch,
Islamic Azad University, Ilam, Iran
AUTHOR
[1] G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3, No. 1, 49-58(1996).
1
[2] G. Y. Chen, On Frobenius and 2-Frobenius group, Jornal of Southwest China Normal University, 20(5), 485-487(1995).(in Chinese).
2
[3] G. Y. Chen, A new characterization of P SL2(q), Southeast Asian Bull. Math., 22(3), 257-263(1998).
3
[4] G. Y. Chen, Characterization of 3D4(q), Southeast Asian Bull. Math., 25, 389-401(2001).
4
[5] G. Y. Chen and H.Shi, 2Dn(3)(9 ⩽ n = 2m + 1 not a prim) can be characterized by its order components, J. Appl. Math. Comput., 19(1-2), 353-362(2005).
5
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
6
[7] M.R.Darafsheh and A.Mahmiani, A quantitative characterization of the linear groups Lp+1(2), Kumamoto J. Math., 20, 33-50(2007).
7
[8] M.R.Darafsheh, Characterizability of the group 2Dp(3) by its order components, where p ⩾ 5 is a prime number not of the form 2m + 1, Acta Math. Sin., (Engl. Ser) 24(7), 1117-1126(2008).
8
[9] M.R.Darafsheh and A.Mahmiani, A characterization of the group 2Dn(2), where n = 2m + 1 ⩾ 5, J. Appl. Math. Comput., 31(1-2), 447-457(2009).
9
[10] M.R.Darafsheh, Characterization of the groups Dp+1(2) and Dp+1(3) using order components, J. Korean Math. Soc., 47(2), 311-329(2010).
10
[11] M.R.Darafsheh and M. Khademi, Characterization of the groups Dp(q) by order components, where p ⩾ 5 is a prime and q = 2, 3 or 5, (manuscript).
11
[12] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of P SL(3, q), where q is an odd prime power, J. Pure Appl. Algebra, 170(2-3), 243-254(2002).
12
[13] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of P SL(3, q) for q = 2n, Acta Math. Sin.(Engl. Ser.), 18(3), 463-472(2002).
13
[14] A. Iranmanesh, B. Khosravi and S.H. Alavi, A characterization of P SU(3, q) for q > 5, South Asian Bull. Math., 26(2), 33-44(2002).
14
[15] M. Khademi, Characterizability of finite simple groups by their order components: a summary of resoults, International Journal of Algebra, vol. 4, no.9, 413-420(2010).
15
[16] Behrooz Khosravi and Bahnam Khosravi, A characterization of E6(q), Algebras, Groups and Geometries, 19, 225-243(2002).
16
[17] Behrooz Khosravi and Bahnam Khosravi, A characterization of 2E6(q), Kumamoto J. Math., 16, 1-11(2003).
17
[18] A. Khosravi and B. Khosravi, A characterization of 2Dn(q), where n = 2m, Int. J. Math., Game theory and algebra, 13, 253-265(2003).
18
[19] A. Khosravi and B. Khosravi, A new characterization of P SL(p, q), Comm. Alg., 32, 2325-2339(2004).
19
[20] Bahman Khosravi, Behnam Khosravi and Behrooz Khosravi, A new characterization of P SU(p, q), Acta Math. Hungar., 107(3), 235-252(2005).
20
[21] A. Khosravi and B. Khosravi, r-recognizability of Bn(q) and Cn(q), where n = 2m ⩾ 4, Journal of pure and applied alg.,199, 149-165(2005).
21
[22] Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi, Characterizability of P SL(p + 1, q) by its order components, Houston Journal of Mathematics, 32(3), 683-700(2006).
22
[23] A. Khosravi and B. Khosravi, Characterizability of P SU(p + 1, q) by its order components, Rocky mountain J. Math., 36(5), 1555-1575(2006).
23
[24] A.S.Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180, No. 6, 787-797, (1989).
24
[25] H. Shi and G.Y. Chen, 2Dp+1(2)(5 ⩽ p ̸= 2m − 1) can be characterized by its order components, Kumamoto J. Math., 18, 1-8(2005).
25
[26] J.S.Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981).
26
[27] K.Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys.3, no. 1, 265-284 (1892).
27
ORIGINAL_ARTICLE
Frames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
http://jlta.iauctb.ac.ir/article_513812_d615ca1c21b4cd708b5612bb7022dc99.pdf
2015-04-01T11:23:20
2018-04-23T11:23:20
25
34
coherence
compressed sensing
frames
L.
Gavruta
true
1
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
LEAD_AUTHOR
G.
Zamani Eskandani
true
2
Faculty of Sciences, Department of Mathematics, University of Tabriz,
Tabriz, Iran
Faculty of Sciences, Department of Mathematics, University of Tabriz,
Tabriz, Iran
Faculty of Sciences, Department of Mathematics, University of Tabriz,
Tabriz, Iran
AUTHOR
P.
Gavruta
pgavruta@yahoo.com
true
3
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania
AUTHOR
[1] R. Baraniuk, P. Steeghs, Compressive radar imaging, IEEE Radar Conference, Waltham, Massachusetts, April 2007.
1
[2] T. Cai, L. Wang, and G. Xu, Stable Recovery of Sparse Signals and an Oracle Inequality, IEEE Trans. Inf. Theory, 56(2010) 3516–3522.
2
[3] E. Candes, The restricted isometry property and its implications for compressed sensing, C. R. Acad. Sci. Paris, Ser. I 346 (2008) 589–592.
3
[4] E. Candes, M. Wakin, An introduction to Compressive Sampling, IEEE Signal Processing Magazine, 25(2)(2008) 21–30.
4
[5] E. Candes, T. Tao, Decoding by Linear Programming, IEEE Trans. Inform. Theory, 51(12)(2005) 4203–4215.
5
[6] E. Candes, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59(2006) 1207–1223.
6
[7] S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20(1)(1998) 33-61.
7
[8] O. Christensen, An Introduction to Frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkh¨auser, Boston, 2003.
8
[9] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52(4)(2006) 1289-1306.
9
[10] D. L. Donoho and M. Elad, Optimally Sparse Representation in General (nonorthogonal) Dictionaries via L1 Minimization, the Proc. Nat. Aca. Sci., 100(2003) 2197–2202.
10
[11] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Processing Magazine, 25(2)(2008) 83–91.
11
[12] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, 2010.
12
[13] M. Lustig, D.L. Donoho, J.M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58(6)(2007) 1182–1195.
13
[14] M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI, IEEE Signal Processing Magazine, 25(2)(2008) 72–82.
14
[15] S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Proc., 41(12)(1993) 3397-3415.
15
[16] L. Potter, P. Schniter, J. Ziniel, Sparse reconstruction for RADAR, SPIE Algorithms for Synthetic Aperture Radar Imagery XV, 2008.
16
[17] J.A. Tropp, Greed is good: Alogorithmic results for sparse approximation, IEEE Trans. Inform. Theory, 50(10)(2004) 2231–2242.
17
[18] L.R. Welch, Lower Bounds on the Maximum Cross Correlation of Signals, IEEE Trans. Inform. Theory, 20(1974) 397–399.
18
ORIGINAL_ARTICLE
The solutions to some operator equations in Hilbert $C^*$-module
In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.
http://jlta.iauctb.ac.ir/article_513813_951b3470a1795ef1334304ce53162f13.pdf
2015-04-01T11:23:20
2018-04-23T11:23:20
35
42
Operator equation
Moore-Penrose inverse
Complemented submodule, Closed range, Hilbert C*-module
M.
Mohammadzadeh Karizaki
mohammadzadehkarizaki@gmail.com
true
1
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
AUTHOR
M.
Hassani
mhassanimath@gmail.com
true
2
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
LEAD_AUTHOR
[1] T. Aghasizadeha and S. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C*-modules, J. Math. Anal. Appl. 354 (2009), 625-629.
1
[2] H. Braden, The equations AT X ± XT A = B, SIAM J. Matrix Anal. Appl. 20 (1998), 295–302.
2
[3] D. S. Djordjevic, Explicit solution of the operator equation A∗X + X∗A = B, J. Comput. Appl. Math. 200 (2007) 701–704
3
[4] D. S. Djordjevic and N. C. Dincic, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252-261.
4
[5] M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3 (1999), 215-243.
5
[6] M. Frank, Self-duality and C∗-reflexivity of Hilbert C∗-modules, Z. Anal. Anwendungen 9 (1990), 165-176.
6
[7] E. C. Lance, Hilbert C∗-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
7
[8] M. Mohammadzadeh Karizaki, M. Hassani, Explicit solution to the operator equation T XS∗ − SX∗T ∗ = A in Hilbert C∗-module,(Submited)
8
[9] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C∗-modules, to appear in Colloq. Math.
9
[10] K. Sharifi, B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C∗-modules, to appear in Bull. Iranian Math. Soc.
10
[11] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008), 992-1000.
11
[12] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008) 1997- 2024.
12
[13] Y. Yuan, Solvability for a class of matrix equation and its applications, J, Nanjing Univ. (Math. Biquart.) 18 (2001) 221-227.
13
ORIGINAL_ARTICLE
Numerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultilized to reduce the (FIDEs) to the solution of a system of linear algebraic equations with unknown generalized Laguerre coefficients. In addition, two examples are given to demonstrate the validity, efficiency and applicability of the technique.
http://jlta.iauctb.ac.ir/article_513814_a72d44cf0986fe41d522e4eb91500748.pdf
2015-04-15T11:23:20
2018-04-23T11:23:20
43
52
Fredholm integro-differential equations
unbounded domain
generalized Laguerre polynomials
Operational matrices
M.
Matinfar
m.matinfar@umz.ac.ir
true
1
Department of Mathematics, University of Mazandaran, Babolsar,
PO. Code 47416-95447, Iran
Department of Mathematics, University of Mazandaran, Babolsar,
PO. Code 47416-95447, Iran
Department of Mathematics, University of Mazandaran, Babolsar,
PO. Code 47416-95447, Iran
LEAD_AUTHOR
A.
Riahifar
true
2
Department of Mathematics, Islamic Azad University, Chalus Branch,
PO. Code 46615-397, Iran
Department of Mathematics, Islamic Azad University, Chalus Branch,
PO. Code 46615-397, Iran
Department of Mathematics, Islamic Azad University, Chalus Branch,
PO. Code 46615-397, Iran
AUTHOR
[1] A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, Boca Raton, Fla., CRC Press, 1998.
1
[2] D. G. Sanikidze, On the numerical solution of a class of singular integral equations on an infinite interval, Differential Equations. 41(9) (2005), pp. 1353–1358.
2
[3] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Holland, 1953.
3
[4] V. Volterra, Theory of functionnals of integro-differential equations, Dover, New York, 1959.
4
[5] F. M. Maalek Ghaini, F. Tavassoli Kajani, and M. Ghasemi, Solving boundary integral equation using Laguerre polynomials, World Applied Sciences Journal. 7(1) (2009), pp. 102–104.
5
[6] N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, and M. Hasan, Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials, World Academy of Science, Engineering and Technology. 47 (2008), pp. 334–337.
6
[7] D. Funaro, Approximations of Differential Equations, Springer-Verlag, 1992.
7
[8] J. Shen, T. Tang, and L. L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, 2011.
8
[9] J. Shen, L. L. Wang, Some Recent Advances on Spectral Methods for Unbounded Domains, J. Commun. Comput. Phys. 5 (2009), pp. 195–241.
9
ORIGINAL_ARTICLE
On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be again a g-Riesz basis. We nd a situation for a g-Riesz basis to have unique dual g-Riesz basis. Also, we show that every modular g-Riesz basis is a g-Riesz basis in Hilbert C*-module but the opposite implication is not true.
http://jlta.iauctb.ac.ir/article_513815_1265191a1504d3221d0d238b3de41d30.pdf
2015-04-01T11:23:20
2018-04-23T11:23:20
53
63
M.
Rashidi-Kouchi
m_rashidi@kahnoojiau.ac.ir
true
1
Young Researchers and Elite Club
Kahnooj Branch, Islamic Azad University, Kerman, Iran
Young Researchers and Elite Club
Kahnooj Branch, Islamic Azad University, Kerman, Iran
Young Researchers and Elite Club
Kahnooj Branch, Islamic Azad University, Kerman, Iran
AUTHOR
[1] A. Alijan, M. A. Dehghan, g-frames and their duals for Hilbert C*-modules, Bull. Iran. Math. Soci., 38(3), (2012), 567-580.
1
[2] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
2
[3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
3
[4] I. Daubechies, A. Grossmann,Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
4
[5] R.J. Dufin, A.C. Schaeer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
5
[6] M. Frank, D. R. Larson, A module frame concept for Hilbert C.-modules, in: Functional and Harmonic Analysis of Wavelets, San Antonio, TX, January 1999, Contemp. Math. 247, Amer. Math. Soc., Providence, RI 207-233, 2000.
6
[7] M. Frank, D.R. Larson, Frames in Hilbert C-modules and C-algebras, J. Operator Theory 48 (2002), 273-314.
7
[8] D. Han, W. Jing, D. Larson, R. Mohapatra, Riesz bases and their dual modular frames in Hilbert C-modules, J. Math. Anal. Appl. 343 (2008), 246-256.
8
[9] D. Han, W. Jing, R. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C-modules, Linear Algebra Appl. 431 (2009), 746-759.
9
[10] A. Khosravi, B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C-modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 1-12.
10
[11] A. Khosravi, B. Khosravi, Fusion frames and g-frames in Hilbert C-modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 433-466.
11
[12] A. Khosravi, B. Khosravi, g-frames and modular Riesz bases in Hilbert C-modules, Int. J. Wavelets Multiresolut.
12
Inf. Process. 10(2) (2012), 1250013 1-12.
13
[13] E.C. Lance, Hilbert C-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, 1995.
14
[14] M. Rashidi-Kouchi, A. Nazari, M. Amini, On stability of g-frames and g-Riesz bases in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process. 12(6) (2014), 1450036 1-16.
15
[15] W. Sun, g-Frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.
16
[16] X.-C. Xiao, X.-M. Zeng, Some properties of g-frames in Hilbert C-modules J. Math. Anal. Appl. 363 (2010), 399-408.
17
ORIGINAL_ARTICLE
Fixed Point Theorems for semi $\lambda$-subadmissible Contractions in b-Metric spaces
Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.
http://jlta.iauctb.ac.ir/article_513816_39494436ccf276e6a17420f6d565b1e1.pdf
2015-04-13T11:23:20
2018-04-23T11:23:20
65
85
fixed point
b-metric
R. J.
Shahkoohi
true
1
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
AUTHOR
A.
Razani
razani@ipm.ir
true
2
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran
AUTHOR
[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b−metric spaces, Math. Slovaca, 4 (2014), 941-960.
1
[2] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, (Russian), Func. An., Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.
2
[3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3 (1993), 3-9.
3
[4] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal. 75 (2012), 3895-3901.
4
[5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b−metric spaces, Int. J. Modern Math., 4(3) (2009), 285-301.
5
[6] S. Czerwick, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.
6
[7] N. Hussain, V. Parvaneh, J.R. Roshan and Z Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B)- contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 256 (2013).
7
[8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Applied Mathematics and Computation 226 (2014), 725-737.
8
[9] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, Journal of Inequalities and Applications 46 (2014).
9
[10] N. Hussain, J.R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, Journal of Inequalities and Applications 486 (2013).
10
[11] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, Journal of Inequalities and Applications 562 (2013).
11
[12] N. Hussain, M. A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstract and Applied Analysis 280817 (2014), 11 pages.
12
[13] N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory and Appl. 212 (2013).
13
[14] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359–1373.
14
[15] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Inc., New Jersey, 1997.
15
[16] E. Karapınar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory and Appl. 94 (2013).
16
[17] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distancces between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
17
[18] M.A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129.
18
[19] P. Kumam, H. Rahimi and G. Soleimani Rad, The existence of fixed and periodic point theorems in cone metric type spaces, J. Nonlinear Sci. Appl. 7 (4) (2014), 255-263.
19
[20] P. Kumam and A. Roldan, On existence and uniqueness of g-best proximity points under (φ, θ, α, g)- contractivity conditions and consequences, Abstract and Applied Analysis, Article ID 234027 (2014), 14 pages.
20
[21] J.J. Nieto and R. Rodrıguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
21
[22] J.J. Nieto and R. Rodr´ıguez-L´opez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin., (English Ser.), 23 (2007) 2205-2212.
22
[23] H. Rahimi and G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing, Germany, 2013.
23
[24] H. Rahimi and G. Soleimani Rad, Some fixed point results in metric type space, J. Basic. Appl. Sci. Res. 2 (9) (2012), 9301-9308.
24
[25] H. Rahimi, P. Vetro, G. Soleimani Rad, Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc Math. Notes. 14 (1) (2013), 233-243.
25
[26] A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
26
[27] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common Fixed Points of Almost Generalized (ψ, φ)s−Contractive Mappings in Ordered b−Metric Spaces, Fixed Point Theory and Appl. 159 (2013).
27
[28] P. Salimi, A. Latif and N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory and Appl. 151 (2013).
28
[29] P. Salimi and P. Vetro, A result of Suzuki type in partial G-metric spaces, Acta Mathematica Scientia 34B(2) (2014), 1-11.
29
[30] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
30