2014
3
4
4
0
On (σ, τ)module extension Banach algebras
2
2
Let A be a Banach algebra and X be a Banach Abimodule. In this paper, we dene a new product on A X and generalize the module extension Banach algebras. We obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.
1

185
194


M
Fozouni
Department of Mathematics, Gonbad Kavous University,
P.O. Box 163, Gonbade Kavous, Golestan, Iran.
Department of Mathematics, Gonbad Kavous
Iran
fozouni@gonbad.ac.ir
Banach algebra
module extension
Ideal
derivation
Arens regular
[[1] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon press, Oxford, 2000. ##[2] H. G. Dales, F. Ghahramani, N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. ##128(1). (1998), 19{54. ##[4] F. F. Bonsall, J. Duncan, Complete Normed Algebras, SpringerVerlag, 1973. ##194 M. Fozouni / J. Linear. Topological. Algebra. 03(04) (2014) 185194. ##[5] H. R. Ebrahimivishki, A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. ##Math. 122. (2011) 225{232. ##[6] M. Eshaghi Gordji, A. Niyazi Motlagh, Module Extension Banach Algebras and (; )amenability, Eur. J. ##P. A. Math. Vol. 2, No. 3. (2009), 361{371. ##[7] A. R. Medghalchi, H. Pourmahmood Aghababa, The rst cohomology group of module extension Banach ##algebras, Rocky Mountain J. Math. Vol. 41. No. 5. (2011), 1639{1651. ##[8] M. S. Moslehian, A. Niyazi Motlagh, Some note on (; )amenability of Banach algebra, Studia Univ. Babes ##Bolyai, Math. Volume LIII, No. 3. (2008), 57{68. ##[9] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia ##Math. 178 (3). (2007), 277{294. ##[10] K. H. Park, On derivations in noncommuattive semiprime rings and Banach algebras, Bull. Korean Math. ##Soc. 42. (2005), No. 4, 671{678. ##[11] Y. Zhang, Weak amenability of module extensions of Banach algebras,Trans. Amer. Math. Soc. Vol. 354, ##No. 10. (2002), 4131{4151.##]
Soft regular generalized bclosed sets in soft topological spaces
2
2
The main purpose of this paper is to introduce and study new classes of soft
closed sets like soft regular generalized bclosed sets in soft topological spaces (brie
y soft
rgbclosed set) Moreover, soft rgclosed, soft gprclosed, soft gbclosed, soft gspclosed, soft
gclosed, soft gbclosed, and soft sgbclosed sets in soft topological spaces are introduced in
this paper and we investigate the relations between soft rgbclosed set and the associated soft
sets. Also, the concept of soft semiregularization of soft topology is introduced and studied
their some properties. We introduce these concepts which are dened over an initial universe
with a xed set of parameters.
1

196
204


S. M.
AlSalem
Department of Mathematics, College of Science, Basra, Iraq.
Department of Mathematics, College of Science,
Iran
shuker.alsalem@gmail.com
Soft set
soft gclosed
soft rgclosed
soft bclosed
[[1] M. Akdag and A. Ozkan, Soft open sets and soft continuous functions, Abstr. Anal. Appl. Art ID ##891341 (2014) 17. ##[2] M. Akdag and Al. Ozkan, Soft bopen sets and soft bcontinuous functions, Math Sci(2014) 8:124. ##[3] I. Arockiarani and A. Arokialancy, Generalized soft gbclosed sets and soft gsbclosed sets in soft topological ##spaces, Int. J. Math. Arch., 4 (2), (2013), 17. ##[4] B. Chen, Soft semiopen sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7(1), ##(2013), 287294. ##[5] F. Feng, Y. B. Jun, and X. Zhao, Soft semirings, Computers and Mathematics with Applications, 56 (2008) ##26212628. ##[6] G. Ilango and M. Ravindran, On Soft Preopen Sets in Soft Topological Spaces, International Journal of ##Mathematics Research,(4), (2013) 399409. ##[7] C. Janaki and V. Jeyanthi, On Soft grClosed sets in Soft Topological Spaces, Journal of Advances in ##Mathematics, 4 (3), (2013), 478485. ##[8] V. Jeyanthi and C. Janaki, grclosed sets in topological spaces , Appl. Math. Inf. Sci., 1(5), (2012), 241246. ##[9] K. Kannan, Soft generalized closed sets in topological spaces, Journal of Theoretical and Applied Information ##Technology, 37 (1), (2012) 1721. ##[10] N. Levine, On Generalized Closed Sets in Topology, Rend. Circ. Math. Palermo, 19 (2), (1970) 8996. ##[11] P. K. Maji, R. Biswas and A. R. Roy, Soft Set Theory, Comput. Math. Appl., 19 (2), (2003), 555562. ##[12] D. Molodtsov, Soft set theoryFirst results,Comput. Math. Appl., 37(45), (1999), 1931. ##[13] M. Shabir and M. Naz , On Soft topological spaces, Comp. And Math. with applications,61(7), (2011), ##17861799. ##[14] J. Subhashinin and C.Sekar, Soft Pre Generalized  Closed Sets in a Soft Topological Space, International ##Journal of Engineering Trends and Technology, 12(7), (2014), 356364. ##[15] C. Yang, A not on soft set theory, Computers and Mathematics with Applications, Int. J. Math. ##Arch.,56(2008), 18991900. ##[16] S. Yuksel, N. Tozlu, and Z. Guzel, On Soft Generalized Closed Sets in Soft Topological Spaces, Journal of ##Theoretical and Appl. Inform. Technology, 55(2), (2013), 1721. ##[17] S. A. Yuksel, N. Tozlu and Z. G. Ergul, Soft Regular Generalized Closed Sets in Soft Topological Spaces, Int. ##Journal of Math. Analysis, 8(8), (2014), 355367. ##[18] I. Zorlutuna, M. Akdag, K. W. Min, and S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy ##Math. and Info., 3(2), (2012), 171185.##]
ODcharacterization of U_3 (9) and its group of automorphisms
2
2
Let L = U3(9) be the simple projective unitary group in dimension 3 over a eld with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to L. Since Aut(L) = Z4 hence almost simple groups related to L are L, L : 2 or L : 4. In fact, we prove that L, L : 2 and L : 4 are ODcharacterizable.
1

205
209


P
Nosratpour
Department of Mathematics, Ilam Branch,
Islamic Azad University, Ilam, Iran.
Department of Mathematics, Ilam Branch,
Islamic
Iran
p.nosratpour@ilamiau.ac.ir
Finite simple group
ODcharacterization
group of lie type
[[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon ##Press, Oxford 1985. ##[2] G. Y. Chen, On structure of Frobenius and 2Frobenius group, Journal of Southwest China Normal University, ##20(5), 485487(1995).(in Chinese) ##[3] M. R. Darafsheh, A. R. Moghaddamfar, and A. R. Zokayi, A characterization of nite simple groups by ##degrees of vertices of their prime graphs, Algebra Colloquium, 12(3), 431442(2005). ##[4] D. Gorenstein, Finite Groups, New York, Harpar and Row, (1980). ##[5] B. Huppert, Endlichen Gruppen I, SpringerVerlag,(1988). ##[6] D. S. Passman, Permutation Groups, New York, Benjamin Inc., (1968). ##[7] J.S.Williams, Prime graph components of nite groups, J. Alg. 69, No.2,487513(1981). ##[8] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Math. Reports. 6, ##112(2009).##]
On φConnes amenability of dual Banach algebras
2
2
Let φ be a w
continuous homomorphism from a dual Banach algebra to C.
The notion of φConnes amenability is studied and some characterizations is given. A type
of diagonal for dual Banach algebras is dened. It is proved that the existence of such a
diagonal is equivalent to φConnes amenability. It is also shown that φConnes amenability
is equivalent to socalled φsplitting of a certain short exact sequence.
1

211
217


A
Mahmoodi
Department of Mathematics, Islamic Azad University,
Central Tehran Branch, Tehran, Iran.
Department of Mathematics, Islamic Azad University
Iran
a mahmoodi@iauctb.ac.ir
Dual Banach algebra
φConnes amenability
φinjectivity
[[1] H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000. ##[2] M. Daws, Connesamenability of bidual and weighted semigroup algebras, Math. Scand. 99 (2006), 217246. ##[3] M. Daws, Dual Banach algebras: representations and injectivity, Studia Math. 178 (2007), 231275. ##[4] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). ##[5] E. Kaniuth, A. T. Lau, J. Pym, On φamenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 ##(2008), 8596. ##[6] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 697 ##[7] V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), 4766. ##[8] V. Runde, Lectures on amenability, Lecture Notes in Mathematics 1774, Springer Verlag, Berlin, 2002. ##[9] V. Runde, Dual Banach algebras: Connesamenability, normal, virtual diagonals, and injectivity of the predual ##bimodule, Math. Scand. 95 (2004), 124144.##]
Fixed point theorems for αψϕcontractive integral type mappings
2
2
In this paper, we introduce a new concept of  ϕcontractive integral type mappings and establish some new xed point theorems in complete metric spaces.
1

219
230


Z
Badehian
Department of Mathematics, Islamic Azad University, Central Tehran Branch,
PO. Code 13185768, Tehran, Iran.
Department of Mathematics, Islamic Azad University
Iran
ziadbadehian@gmail.com


M. S.
Asgari
Department of Mathematics, Islamic Azad University, Central Tehran Branch,
PO. Code 13185768, Tehran, Iran.
Department of Mathematics, Islamic Azad University
Iran
msasgari@yahoo.com
fixed point
αψϕcontractive integral type mapping
complete metric space
[[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. ##Math 3 (1922) 133181. ##[2] A. Branciari, A xed point theorem for mappings satisfying a general contractive condition of integral type, ##Int. J. Math. Math. Sci 29 (2002) 531536. ##[3] A. Djoudi, F. Merghadi, Common xed point theorems for maps under a contractive condition of integral ##type, J. Math. Anal. Appl. 341 (2) (2008) 953960. ##[4] R. Kannan, Some results on xed points, Bull. Calcutta Math. Soc. 60 (1968), 7176. ##[5] Z. Liu, X. Li, S. M. Kang, S. Y. Cho, Fixed point theorems for mappings satisfying contractive conditions ##of integral type and applications, Fixed Point Theory Appl No. 64 (2011) 18 pages doi: 10.1186/16871812 ##[6] J. Meszros, A comparison of various denitions of contractive type mappings, Bull. Calcutta Math. Soc. 84 ##(1992), no. 2, 167194. ##[7] Mocanu, M, Popa, V, Some xed point theorems for mappings satisfying implicit relations in symmetric ##spaces, Libertas Math 28 (2008) 113. ##[8] H. Rahimi, G.Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing, Germany, ##[9] B. E. Rhoades, A comparison of various denitions of contractive mappings, Trans. Amer. Math. Soc. 226 ##(1977), 257290. ##[10] B.E. Rhoades, A xed point theorem of integral type, J. Adv. Math. Stud. 5 (2) (2012) 98100. ##[11] B. E. Rhoades, Contractive denitions revisited, Topological Methods in Nonlinear Functional Analysis ##(Toronto, Ont., 1982), Contemp. Math., vol. 21, American Mathematical Society, Rhode Island, 1983, 189 ##[12] B. E. Rhoades, Contractive denitions, Nonlinear Analysis, World Science Publishing, Singapore, 1987, 513 ##[13] V. L. Rosa, P. Vetro, Common xed points for  ϕcontractions in generalized metric spaces, Nonlinear ##Analysis: Modeling and Control 19 No. 1 (2014) 4354. ##[14] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for  contractive type mappings, Nonlinear Anal 75 ##(2012) 43414349. ##[15] B. Samet, H. Yazidi, Fixed point theorems with respect to a contractive condition of integral type, Rend. Circ. ##Mat. Palermo 60 (2011) 181190.##]
Steensen method for solving nonlinear matrix equation X+A^T X^(1) A=Q
2
2
In this article we study Steensen method to solve nonlinear matrix equation
X+A^T X^(1) A=Q, when A is a normal matrix. We establish some conditions
that generate a sequence of positive denite matrices which converges to solution
of this equation.
1

231
247


A
Nazari
Department of Mathematics, Arak University, P.O. Box 3815688349, Arak, Iran.
Department of Mathematics, Arak University,
Iran
anazari@araku.ac.ir


Kh
Sayehvand
Faculty of Mathematical Sciences, University of Malayer, P. O. Box 1684613114,
Malayer, Iran.
Faculty of Mathematical Sciences, University
Iran


M
Rostami
Faculty of Mathematical Sciences, University of Malayer, P. O. Box 1684613114,
Malayer, Iran.
Faculty of Mathematical Sciences, University
Iran
Fixed point method
Steensen method
Nonlinear matrix equations
[[1] R. Bhatia, Matrix analysis , Springer, Berlin, 1997. ##[2] Burden, Richard. L,Numerical analysis, 6th, ed. 1997. ##[3] Fuzhen Zhang, Matrix Theory Basic Result and Techniques, Springer, 1999. ##[4] J. C. Engwerda, On the existence of a positive denite solution of the matrix equation X + ATX1A = I, ##Linear Algebra App. 194 (1993) 91108. ##[5] S. M. ElSayed, A. M. AlDbiban, A new inversion free iteration for solving the equation X+ATX1A = Q, ##Linear Algebra App. 181 (2005) 148156. ##[6] X. Zhan, J. Xie, On the Matrix Equation X + ATX1A = I, Linear Algebra Appl. 247, (1996) 337345. ##[7] D. V. Ouellette, Schur complements and statistics, Linear Algebru Appl. 36 (1981) 187295. ##[8] W. N. Anderson, T. D. Morley, and G. E. Trapp, Ladder networks, futed Points, and the geometric mean, ##Circuits Systems Signal Process. 3 (1983) 259268. ##[9] T. Ando, Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim. 21 (1980) 579589. ##[10] R. S. Bucy, A priori bound for the Riccati equation, in Proceedings of the Sixth Berkeley Symposium on ##Mathematical Statistics and Probability, Vol. III. ##A. Nazari et al. / J. Linear. Topological. Algebra. 03(04) (2014) 231247. 247 ##[11] W. L. Green and E. Kamen, Stabilization of linear Systems over a commutative normed algebra with appli ##cations to spatially distributed Parameter dependent Systems, SIAM J. Control Optim. 23 (1985) 118. ##[12] W. Pusz and S. L. Woronowitz, Funcitonal calculus for sequilinear forms and the purication map, Rep. ##Math. Phys. 8 (1975) 159170. ##[13] G. E. Trapp, The Ricatii equation and the geometric mean, Contemp. Math. 47 (1985) 437445. ##[14] J. Zabezyk, Remarks on the control of discrete time distributed paramter Systems, SIAM J. Control 12 (1974) ##[15] J. Zemanian, Nonuniform semiinnite grounded grids, SIAM J. Appl. Math. 13 (1982) 770788. ##[16] R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge, U.P. Londan, 1985. ##[17] R. Bhatia, C. Davis, More matrix forms of the arithmeticgeometric mean inequality, SIAM J. Matrix Anal. ##Appl. 14 (1993) 132136. ##[18] J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and sucient conditions for the existente ##of a positive denite solution of the matrix equation X + AX1A = Q, Linear Algebra Appl. 186 (1993) ##]