2015
4
1
1
0
Upper and lower alpha (mu_{X};mu_{ Y} )continuous multifunctions
2
2
In this paper, a new class of multifunctions, called generalized alpha (mu_{X};mu_{ Y} )continuous multifunctions, has been dened and studied. Some characterizations and severalproperties concerning generalized alpha (mu_{X};mu_{ Y} )continuous multifunctions are obtained. The relationships between generalized alpha (mu_{X};mu_{ Y} )continuous multifunctions and some known concepts are also discussed.
1

1
9


M
Akdag
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY.
Cumhuriyet University Science Faculty Department
Iran


F
Erol
Cumhuriyet University Science Faculty Department of Mathematics
58140 S_IVAS / TURKEY.
Cumhuriyet University Science Faculty Department
Iran
Generalized open sets
multifunction
generalized continuity
[[1] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351357, 2002.##[2] A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47, 9196, 2004.## [3] A. Csaszar, ”δ−and θ−modifications of generalized topologies,” Acta Mathematica Hungarica, vol. 120, pp. 274279, 2008. ##[4] A. Csaszar, ”Product of generalized topologies,” Acta Mathematica Hungarica, vol. 123, no:12, pp. 127132, 2009. ##[5] A. Csaszar, γconnected sets, Acta Math. Hungar., 101, 273279, 2003. ##[6] A. Csaszar, ”Further remarks on the formula for γ−interior,” Acta Mathematica Hungarica, vol. 113, no: 4, pp. 325332, 2006.## [7] A. Csaszar, ”Generalized open sets in generalized topologies,” Acta Mathematica Hungarica, vol. 106,no: 12 pp. 5366, 2005. ##[8] A. Kanibir and I. L. Reilly, ”Generalized continuity for multifunctions, ” Acta Mathematica Hungarica, vol. 122, no . 3, pp. 283292, 2009.## [9] A. S. Mashour, M. E. Abd ElMonsef, and S. N. ElDeeb, ”On precontinuous and weakprecontinuous functions, ”Proceedings of the Mathematical and Physical Society of Egypt, pp. 4753, 1982. ##[10] C. Berge, Topological Spaces, Macmillian, New York, 1963. English translation by E. M. Patterson of Espaces Topologiques, Fonctions Multivoques, Dunod, Paris, 1959. ##[11] C. Cao, J. Yang, W. Wang, B. Wang, Some generalized continuities functions on generalized topological spaces, Hacettepe Jou. of Math. and Stat., 42(2), 159163, 2013.## [12] C. Boonpok, ”On upper and Lower β (µX, µY ) Continuous multifunctions”, Int. J. of Math. and Math. Sci., 2012 Doi: 10. 1155/2012/931656.## [13] D. Andrijevic, ”Semipreopen sets, ” Matematicki Vesnik, vol. 38, no. 2, pp. 2432, 1986.## [14] J. P. Aubin, H. Frankowska, SetValued Analysis, Birkhauser, Boston, 1990.## [15] M. Akda˘g and F. Erol, Upper and Lower P re(µX, µY ) Continuous Multifunctions, Scientific Journal of Mathematics Research Oct. 2014, Vol. 4 Iss. 5, PP. 4652.## [16] M. E. Abd ElMonsef, S. N. ElDeeb, and R. A. Mahmoud, ”βopen sets and βcontinuous mapping, ”Bulletin of the Faculty of Science. Assiult Universty, vol. 12, no. 1, pp. 7790, 1983.## [17] N. Levine, ”Semiopen sets and semicontiuity in topological spaces, ” The American Mathematical Montly, vol. 70, pp. 3641, 1963.## [18] O. Njastad, On some classes of nearly open sets, Pacific Journal of Math., vol.15, 961870, 1965.## [19] R. Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124, 363369, 2009.## [20] R. Shen, A note on generalized connectedness, Acta Math. Hungar., 122, 231235, 2009.## [21] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hun., 128, 299306, 2010.##]
Characterization of G2(q), where 2 < q = 1(mod3) by order components
2
2
In this paper we will prove that the simple group G2(q) where 2 < q = 1(mod3)is recognizable by the set of its order components, also other word we prove that if G is anite group with OC(G) = OC(G2(q)), then G is isomorphic to G2(q).
1

11
23


P
. Nosratpour
Department of Mathematics, Ilam Branch,
Islamic Azad University, Ilam, Iran.
Department of Mathematics, Ilam Branch,
Islamic
Iran
prime graph
order component
linear group
[[1] G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3, No. 1, 4958(1996).##[2] G. Y. Chen, On Frobenius and 2Frobenius group, Jornal of Southwest China Normal University, 20(5), 485487(1995).(in Chinese).## [3] G. Y. Chen, A new characterization of P SL2(q), Southeast Asian Bull. Math., 22(3), 257263(1998).##[4] G. Y. Chen, Characterization of 3D4(q), Southeast Asian Bull. Math., 25, 389401(2001).## [5] G. Y. Chen and H.Shi, 2Dn(3)(9 ⩽ n = 2m + 1 not a prim) can be characterized by its order components, J. Appl. Math. Comput., 19(12), 353362(2005).## [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.## [7] M.R.Darafsheh and A.Mahmiani, A quantitative characterization of the linear groups Lp+1(2), Kumamoto J. Math., 20, 3350(2007).## [8] M.R.Darafsheh, Characterizability of the group 2Dp(3) by its order components, where p ⩾ 5 is a prime number not of the form 2m + 1, Acta Math. Sin., (Engl. Ser) 24(7), 11171126(2008).## [9] M.R.Darafsheh and A.Mahmiani, A characterization of the group 2Dn(2), where n = 2m + 1 ⩾ 5, J. Appl. Math. Comput., 31(12), 447457(2009).## [10] M.R.Darafsheh, Characterization of the groups Dp+1(2) and Dp+1(3) using order components, J. Korean Math. Soc., 47(2), 311329(2010).## [11] M.R.Darafsheh and M. Khademi, Characterization of the groups Dp(q) by order components, where p ⩾ 5 is a prime and q = 2, 3 or 5, (manuscript).## [12] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of P SL(3, q), where q is an odd prime power, J. Pure Appl. Algebra, 170(23), 243254(2002).## [13] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of P SL(3, q) for q = 2n, Acta Math. Sin.(Engl. Ser.), 18(3), 463472(2002).## [14] A. Iranmanesh, B. Khosravi and S.H. Alavi, A characterization of P SU(3, q) for q > 5, South Asian Bull. Math., 26(2), 3344(2002).## [15] M. Khademi, Characterizability of finite simple groups by their order components: a summary of resoults, International Journal of Algebra, vol. 4, no.9, 413420(2010).## [16] Behrooz Khosravi and Bahnam Khosravi, A characterization of E6(q), Algebras, Groups and Geometries, 19, 225243(2002).##[17] Behrooz Khosravi and Bahnam Khosravi, A characterization of 2E6(q), Kumamoto J. Math., 16, 111(2003).## [18] A. Khosravi and B. Khosravi, A characterization of 2Dn(q), where n = 2m, Int. J. Math., Game theory and algebra, 13, 253265(2003).## [19] A. Khosravi and B. Khosravi, A new characterization of P SL(p, q), Comm. Alg., 32, 23252339(2004).## [20] Bahman Khosravi, Behnam Khosravi and Behrooz Khosravi, A new characterization of P SU(p, q), Acta Math. Hungar., 107(3), 235252(2005).## [21] A. Khosravi and B. Khosravi, rrecognizability of Bn(q) and Cn(q), where n = 2m ⩾ 4, Journal of pure and applied alg.,199, 149165(2005).## [22] Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi, Characterizability of P SL(p + 1, q) by its order components, Houston Journal of Mathematics, 32(3), 683700(2006).## [23] A. Khosravi and B. Khosravi, Characterizability of P SU(p + 1, q) by its order components, Rocky mountain J. Math., 36(5), 15551575(2006).## [24] A.S.Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180, No. 6, 787797, (1989).## [25] H. Shi and G.Y. Chen, 2Dp+1(2)(5 ⩽ p ̸= 2m − 1) can be characterized by its order components, Kumamoto J. Math., 18, 18(2005).## [26] J.S.Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487513(1981).## [27] K.Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys.3, no. 1, 265284 (1892).##]
Frames for compressed sensing using coherence
2
2
We give some new results on sparse signal recovery in the presence of noise, forweighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, forrandom dictionaries this condition is rarely satised. Moreover, we give better estimationsthen the ones given recently by Cai, Wang and Xu.
1

25
34


L.
Gavruta
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania;
Politehnica University of Timisoara, Department
Iran


G
Zamani Eskandani
Faculty of Sciences, Department of Mathematics, University of Tabriz,
Tabriz, Iran.
Faculty of Sciences, Department of Mathematics,
Iran


P
Gavruta
Politehnica University of Timisoara, Department of Mathematics,
Piata Victoriei no.2, 300006 Timisoara, Romania;
Politehnica University of Timisoara, Department
Iran
pgavruta@yahoo.com
coherence
compressed sensing
frames
The solutions to some operator equations in Hilbert C*module
2
2
In this paper, we state some results on product of operators with closed rangesand we solve the operator equation TXS* SX*T*= A in the general setting of theadjointable operators between Hilbert C*modules, when TS = 1. Furthermore, by usingsome block operator matrix techniques, we nd explicit solution of the operator equationTXS* SX*T*= A.
1

35
42


M
Mohammadzadeh Karizaki
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Department of Mathematics, Mashhad Branch,
Iran
mohammadzadehkarizaki@gmail.com


M
Hassani
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Department of Mathematics, Mashhad Branch,
Iran
mhassanimath@gmail.com
Operator equation
MoorePenrose inverse
Complemented submodule, Closed range, Hilbert C*module
Numerical solution of Fredholm integraldierential equations on unbounded domain
2
2
In this study, a new and ecient approach is presented for numerical solution ofFredholm integrodierential equations (FIDEs) of the second kind on unbounded domainwith degenerate kernel based on operational matrices with respect to generalized Laguerrepolynomials(GLPs). Properties of these polynomials and operational matrices of integration,dierentiation are introduced and are ultilized to reduce the (FIDEs) to the solution ofa system of linear algebraic equations with unknown generalized Laguerre coecients. Inaddition, two examples are given to demonstrate the validity, eciency and applicability ofthe technique.
1

43
52


M
Matinfar
Department of Mathematics, University of Mazandaran, Babolsar,
PO. Code 4741695447, Iran;
Department of Mathematics, University of
Iran
m.matinfar@umz.ac.ir


A
Riahifar
Department of Mathematics, Islamic Azad University, Chalus Branch,
PO. Code 46615397, Iran.
Department of Mathematics, Islamic Azad University
Iran
Fredholm integrodierential equations
unbounded domain
generalized Laguerre polynomials
Operational matrices
On duality of modular GRiesz bases and GRiesz bases in Hilbert C*modules
2
2
In this paper, we investigate duality of modular gRiesz bases and gRiesz basesin Hilbert C*modules. First we give some characterization of gRiesz bases in Hilbert C*modules, by using properties of operator theory. Next, we characterize the duals of a givengRiesz basis in Hilbert C*module. In addition, we obtain sucient and necessary conditionfor a dual of a gRiesz basis to be again a gRiesz basis. We nd a situation for a gRieszbasis to have unique dual gRiesz basis. Also, we show that every modular gRiesz basis is agRiesz basis in Hilbert C*module but the opposite implication is not true.
1

53
63


M
RashidiKouchi
Young Researchers and Elite Club
Kahnooj Branch, Islamic Azad University, Kerman, Iran.
Young Researchers and Elite Club
Kahnooj
Iran
[[1] A. Alijan, M. A. Dehghan, gframes and their duals for Hilbert C*modules, Bull. Iran. Math. Soci., 38(3),##(2012), 567580.##[2] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.##[3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.##[4] I. Daubechies, A. Grossmann,Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271##[5] R.J. Dun, A.C. Schaeer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952),##[6] M. Frank, D. R. Larson, A module frame concept for Hilbert C.modules, in: Functional and Harmonic##Analysis of Wavelets, San Antonio, TX, January 1999, Contemp. Math. 247, Amer. Math. Soc., Providence,##RI 207233, 2000.##[7] M. Frank, D.R. Larson, Frames in Hilbert Cmodules and Calgebras, J. Operator Theory 48 (2002),##[8] D. Han, W. Jing, D. Larson, R. Mohapatra, Riesz bases and their dual modular frames in Hilbert Cmodules,##J. Math. Anal. Appl. 343 (2008), 246256.##[9] D. Han, W. Jing, R. Mohapatra, Perturbation of frames and Riesz bases in Hilbert Cmodules, Linear##Algebra Appl. 431 (2009), 746759.##[10] A. Khosravi, B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert Cmodules,##Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 112.##[11] A. Khosravi, B. Khosravi, Fusion frames and gframes in Hilbert Cmodules, Int. J. Wavelets Multiresolut.##Inf. Process. 6 (2008), 433466.##[12] A. Khosravi, B. Khosravi, gframes and modular Riesz bases in Hilbert Cmodules, Int. J. Wavelets Multiresolut.##Inf. Process. 10(2) (2012), 1250013 112.##[13] E.C. Lance, Hilbert CModules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser.##210, Cambridge Univ. Press, 1995. ##[14] M. RashidiKouchi, A. Nazari, M. Amini, On stability of gframes and gRiesz bases in Hilbert C*modules,##Int. J. Wavelets Multiresolut. Inf. Process. 12(6) (2014), 1450036 116.##[15] W. Sun, gFrames and gRiesz bases, J. Math. Anal. Appl. 322 (2006), 437452.##[16] X.C. Xiao, X.M. Zeng, Some properties of gframes in Hilbert Cmodules J. Math. Anal. Appl. 363 (2010),##]
Fixed Point Theorems for semi lambdasubadmissible Contractions in bMetric spaces
2
2
Here, a new certain class of contractive mappings in the bmetric spaces is introduced. Some xed point theorems are proved which generalize and modify the recent resultsin the literature. As an application, some results in the bmetric spaces endowed with apartial ordered are proved.
1

65
85


R.J
Shahkoohi
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran.
Department of Mathematics, Science and Research
Iran


A
Razani
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran, Iran.
Department of Mathematics, Science and Research
Iran
fixed point
bmetric