On the Finite Groupoid $G(n)$

M. Azadi* and H. Amadi*

*Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Abstract. In this paper we study the existence of commuting regular elements, verifying the notion left (right) commuting regular elements and its properties in the groupoid $G(n)$. Also we show that $G(n)$ contains commuting regular subsemigroup and give a necessary and sufficient condition for the groupoid $G(n)$ to be commuting regular.

© 2013 IAUCTB. All rights reserved.

Keywords: Commuting regular semigroup, semigroup, groupoid.

2010 AMS Subject Classification: 15A27, 20M16, 20L05.

1. Introduction

We use S and G to denote a semigroup and a groupoid, respectively. An element x of a semigroup S is called regular if there exists y in S such that, $x = xyx$ [3]. Two elements x and y of a semigroup S are commuting regular if for some z in S, $xy = yzx$ [2]. A semigroup S is called commuting regular if and only if for each $x, y \in S$ there exists an element z of S such that $xy = yzx$ [1]. In [2] Pourfaraj showed that the existence of commuting regular elements for the loop ring $Z_t[L_n(m)]$ when t is an even perfect number or t is the form of 2^ip or 3^ip, where p is an odd prime or in general, when $t = p_1p_2$ (p_1 and p_2 are distinct odd primes). Define a binary operation $*$ on $G = Z_n \cup \{e\}$ as follows,

1) $a * a = a$ for all $a \in G$.
2) $a * e = e * a = a$ for all $a \in G$.
3) $a * b = ta + ub \pmod{n}$, where $t, u \in Z_n$ are fixed elements and $a, b \in G$ ($a \neq b$), $Z_n = \{0, 1, 2, ..., n - 1\}$, $n \geq 3$ and $e \notin Z_n$.

The properties of these groupoids denote by $G(n)$ has been studied in [5].

*Corresponding author.
E-mail address: meh.azadi@iauctb.ac.ir (M. Azadi).
2. Commuting Regular Elements

Definition 2.1 Two elements \(a\) and \(b\) of a groupoid \(G\) are called left commuting regular if for some \(c_1 \in G\), \(ab = ((ba)c_1)(ba)\). Similarly, they are called right commuting regular if for some \(c_2 \in G\), \(ab = (ba)(c_2ba)\). Finally, two elements \(x\) and \(y\) are commuting regular if they are both left and right commuting regular. [see 4]

Definition 2.2 A groupoid \(G\) is called left commuting regular groupoid if for each \(a, b \in G\) there exists \(c_1 \in G\) such that \(ab = (ba)c_1(ba)\). Similarly, right commuting regular groupoid is defined. A groupoid \(G\) is called commuting regular groupoid if \(G\) is both a left and right commuting regular groupoid.[see 4]

Example 2.3 The groupoid \(G(3)\) where \(t = 1\) and \(u = 2\) is given by the following table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>e</td>
</tr>
</tbody>
</table>

We have:

\[
(2 * 1) * (0 * (2 * 1)) = 1 * (0 * 1) = 1 * 2.
\]

So, 1 and 2 are right commuting regular. On the other hand,

\[
\begin{align*}
1 * 2 & \neq ((2 * 1) * 0) * (2 * 1) \\
1 * 2 & \neq ((2 * 1) * 1) * (2 * 1) \\
1 * 2 & \neq ((2 * 1) * 2) * (2 * 1) \\
1 * 2 & \neq ((2 * 1) * e) * (2 * 1).
\end{align*}
\]

Thus, 1 and 2 aren’t left commuting regular. 2 and 2 are commuting regular,

\[
2 * 2 = (2 * 2) * e * (2 * 2).
\]

Proposition 2.4 Let the \(G(n)\) be a groupoid, where \(n = tu - 1\). Suppose that \(a, b \in G(n)\) and pair of elements \(\{b * a, c_1, (b * a) * c_1\}\) and \(\{b * a, c_2, (b * a) * c_2\}\) are distinct. Then \(a\) and \(b\) are commuting regular elements, where \(b \equiv au \pmod{n}\), \(c_1 \equiv -bt^3 - b \pmod{n}\) and \(c_2 \equiv -au^3 - a \pmod{n}\).

Proof We consider two follows case:

Case1) If \(a * b = b * a\) then:

\[
a * b = (b * a) * (a * b) * (b * a)
\]

Case2) If \(a * b \neq b * a\) then:
\[(b * a) \ast c_1 \ast (b * a) = \]
\[= ((bt + au) \ast c_1) \ast (bt + au) \]
\[= ((bt + au) \ast t + c_1 u) \ast (bt + au) \]
\[= bt^3 + au^2 + c_1 tu + btu + au^2 \]
\[= bt^3 + at + bt^3 - b + b + bu \ (\text{since} \ tu \equiv 1 \ (\text{mod} \ n) \ \text{and} \ b \equiv au \ (\text{mod} \ n)) \]
\[= at + bu \]
\[= a \ast b \]

Similarly,

\[a \ast b = (b \ast a) \ast (c_2 \ast (b \ast a)).\]

Proposition 2.5 Let the \(G(n)\) be a groupoid, where \(n \equiv tu + 1\). Suppose that \(a, b \in G(n)\) and pair of elements in \(\{b \ast a, c_1, (b \ast a) \ast c_1\}\) and \(\{b \ast a, c_2, (b \ast a) \ast c_2\}\) are distinct. Then \(a\) and \(b\) are commuting regular elements, where, \(b \equiv au \ (\text{mod} \ n), c_1 \equiv -2at + bt^3 - b \ (\text{mod} \ n)\) and \(c_2 \equiv -2at - 2bu + au^3 - a \ (\text{mod} n)\).

Example 2.6 Let \(G(20)\) where \(t = 3\) and \(u = 7\), then \(a = 11\) and \(b = 17\) are commuting regular elements:

\[((17 \ast 11) \ast 4) \ast (17 \ast 11) = (17 \ast 11) \ast (16 \ast (17 \ast 11)) = 11 \ast 17.\]

Note that 17 \(\equiv 11 \times 7 \ (\text{mod} \ 20)\).

Proposition 2.7 Let \(G(n)\) be a groupoid, where \(t \equiv -u \ (\text{mod} \ n)\), then \(a, b \in G(n)\) are commuting regular elements, where \(at \equiv bt \ (\text{mod} \ n)\).

Proof Since \(at \equiv bt \ (\text{mod} \ n)\) and \(t \equiv -u \ (\text{mod} \ n)\):

\[-au \equiv -bu \ (\text{mod} \ n).\]

So in \(G(n)\),

\[a \ast b = at + bu = bt + au = b \ast a.\]

And therefore:

\[a \ast b = (b \ast a) \ast (a \ast b) \ast (b \ast a).\]

So \(a\) and \(b\) are commuting regular.

Proposition 2.8 Let \(G(n)\) be a groupoid, where \(n = (t - u)k, \ k \in \mathbb{Z}\), if for some \(a, b \in G(n)\), \(a - b \equiv k \ (\text{mod} \ n)\), then \(a\) and \(b\) are commuting regular elements.

Proof We have \(a - b \equiv \frac{n}{t - u} \ (\text{mod} \ n)\), so

\[(a - b)(t - u) \equiv 0 \ (\text{mod} \ n)\]

Therefore, in \(G(n)\):

\[at - au - bt + bu = 0\]

\[at + bu = bt + au\]
Proposition 2.9 Let $G(n)$ be a groupoid, then $a, b \in G(n)$ are commuting regular elements where $at \equiv au \pmod{n}$ and $bt \equiv bu \pmod{n}$.

Proof We have $a \ast b = at + bu = bt + au = b \ast a$ So

$$a \ast b = (b \ast a) \ast (a \ast b) \ast (b \ast a)$$

Thus a and b are commuting regular elements.

Proposition 2.10 Let $G(n)$ be a groupoid, where $t + u = n$. Suppose that $a \in G(n)$ and $k \in \mathbb{Z}$. Then a and ka are commuting regular elements, where $au \equiv -au \pmod{n}$.

Proof Since $t \equiv u \pmod{n}$, for all $a \in G(n)$ we have $at \equiv -au \pmod{n}$ and by $au \equiv -au \pmod{n}$, $at \equiv au \pmod{n}$. So $kat \equiv kau \pmod{n}$. Now by the proposition 2.9, a and ka are commuting regular elements.

3. Commuting Regular Groupoids

Proposition 3.1 The groupoid $G(n)$ for all $a \in G(n)$ contains the commuting regular subgroupoid $\{e, a\}$.

Proof The subgroupoid $\{e, a\}$ given by the following table,

$$
\begin{array}{c|cc}
\ast & e & a \\
\hline
 e & e & a \\
 a & a & e \\
\end{array}
$$

$e \ast a = (a \ast e) \ast a \ast (a \ast e)$

$a \ast a = (a \ast a) \ast e \ast (a \ast a)$

$e \ast e = (e \ast e) \ast e \ast (e \ast e)$

Proposition 3.2 Let $G(n)$ be a groupoid, where $n = 2u$, $u^2 \equiv u \pmod{n}$ and $t = 1$. Then for every a in $G(n)$, $\{e, a, a + u\}$ is a commuting regular groupoid.

Proof Let $b = a + u$. If, we have:

$$x \ast x = e, \ x \ast e = e \ast x = x$$

Also,

$$au = \begin{cases}
0 & \text{if } a \text{ is even } (mod \ n), \\
 u & \text{if } a \text{ is odd } (mod \ n),
\end{cases}$$

$$a \ast b = b \ast a \equiv a + u + au \equiv \begin{cases}
b & \text{if } a \text{ is even } (mod \ n) \\
a & \text{if } a \text{ is odd } (mod \ n)
\end{cases}$$
So \(\{e, a, b\} \) is groupoid.
For all \(x, y \in \{e, a, b\} \) we have \(x \ast y = y \ast x \). So
\[
x \ast y = (y \ast x) \ast (x \ast y) \ast (y \ast x)
\]
Thus \(\{e, a, b\} \) is a commuting regular groupoid.

Example 3.3 Let \(G(n) \) be a groupoid, where \(n = 6 \), \(u = 3 \) and \(t = 1 \) is given by the following table,
\[
\begin{array}{c|ccccc}
\ast & e & 0 & 1 & 2 & 3 & 4 & 5 \\
e & e & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & e & 3 & 0 & 3 & 0 & 3 \\
1 & 1 & 1 & e & 1 & 4 & 1 & 4 \\
2 & 2 & 2 & 5 & e & 5 & 2 & 5 \\
3 & 3 & 3 & 0 & 3 & e & 3 & 0 \\
4 & 4 & 4 & 1 & 4 & 1 & e & 1 \\
5 & 2 & 5 & 2 & 5 & 2 & 5 & e \\
\end{array}
\]
\(\{e, 0, 3\} \), \(\{e, 1, 4\} \) and \(\{e, 2, 5\} \) are commuting regular groupoids.

Proposition 3.4 Let \(G(n) \) be a groupoid, where \(t = 0 \), \(n = 2u \) and \(u \) is an odd element. Therefore groupoid \(G(n) \) contains commuting regular and commutative groupoids \(G_1 = \{e, 1, 3, \ldots, n - 1\} \) and \(G(2) = \{e, 0, 2, \ldots, n - 2\} \). In particular, if \(u^2 \equiv u \pmod{n} \), then \(G_1 \) and \(G_2 \) are commuting regular and commutative semigroup.

Proof For all \(a, b \in G_1 - \{e\} \), if \(a \neq b \) we have \(a \ast b = b \ast a = u \). So, we have:
\[
a \ast b = (b \ast a) \ast (a \ast b) \ast (b \ast a)
\]
In particular, if \(u^2 = u \pmod{n} \) for all \(a, b, c \in G_1 \) we have:
\[
(a \ast b) \ast c = bu \ast c = cu
\]
\[
a \ast (b \ast c) = a \ast cu = cu^2
\]
Therefore \(G_1 \) is a semigroup. The proof for \(G_2 \) is the same as above.

Corollary 3.5 Let \(G(n) \) be a groupoid, where \(u = 0, n = 2t \) and \(t \) is odd element. Then groupoid \(G(n) \) contains commuting regular and commutative groupoids \(G_1 = \{e, 1, 3, \ldots, n - 1\} \) and \(G(2) = \{e, 0, 2, \ldots, n - 2\} \). In particular, if \(t^2 \equiv t \pmod{n} \) then \(G_1 \) and \(G_2 \) are commuting regular and commutative semigroup.

Proposition 3.6 Let \(G(n) \) be a groupoid, where \(t = 0, n = 3u \) and \(u = 3k + 1 \) for some \(k \in \mathbb{Z} \). Then groupoid \(G(n) \) contains commuting regular and commutative groupoids \(G_1 = \{e, 2, 5, \ldots, n - 1\} \), \(G(2) = \{e, 1, 4, \ldots, n - 2\} \) and \(G_3 = \{e, 0, 3, \ldots, n - 3\} \). In particular, if \(u^2 \equiv u \pmod{n} \), then \(G_1, G_2 \) and \(G_3 \) are commuting regular and commutative semigroups.

Theorem 3.7 Let \(G(n) \) be a groupoid, where \(t = 0, n = mu \) and \(u = mk + 1 \), for some \(m, k \in \mathbb{Z} \). Then groupoid \(G(n) \) contains commuting regular and commutative groupoids. In particular, if \(u^2 \equiv u \pmod{n} \) then \(G(n) \) contains commuting regular and commutative semigroups.

Example 3.8 Let \(G(n) \) be a groupoid, where \(t = 0, u = 5 \) and \(n = 10 \) is given in the following table,
<table>
<thead>
<tr>
<th>*</th>
<th>e</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>e</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>e</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>e</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>e</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>e</td>
</tr>
</tbody>
</table>

Clearly, the semigroups \{e, 0, 2, 4, 6, 8\}, \{e, 1, 3, 5, 7, 9\} are commuting regular and commutative.

Theorem 3.9 Let \(G(n)\) be a groupoid, where \(t = u \mod n\) then \(G(n)\) is a commuting regular and commutative semigroup.

Proof Let \(a, b \in G(n) - \{e\}\),

1) If \(a \neq b\), then \(a\) and \(b\) are commuting regular elements [4, Theorem 3.8].

2) If \(a = b\) then \(a * b = b * a = e\), so \(a * b = (b * a) * e * (b * a)\),

3) If \(b = e\) then \(a * e = e * a = a\), so \(a * e = (e * a) * a * (e * a)\).

On the other hand,

\[
a * (b * c) = a * (bt + ct) = at + bt^2 + ct^2
\]

\[
(a * b) * c = (at + bt) * c = at^2 + bt^2 + ct.
\]

So, the groupoid \(G(n)\) is a semigroup.

References

