Nazari, A., Kamali Maher, S. (2013). On the nonnegative inverse eigenvalue problem of traditional matrices. Journal of Linear and Topological Algebra (JLTA), 02(03), 167-174.

A. M. Nazari; S. Kamali Maher. "On the nonnegative inverse eigenvalue problem of traditional matrices". Journal of Linear and Topological Algebra (JLTA), 02, 03, 2013, 167-174.

Nazari, A., Kamali Maher, S. (2013). 'On the nonnegative inverse eigenvalue problem of traditional matrices', Journal of Linear and Topological Algebra (JLTA), 02(03), pp. 167-174.

Nazari, A., Kamali Maher, S. On the nonnegative inverse eigenvalue problem of traditional matrices. Journal of Linear and Topological Algebra (JLTA), 2013; 02(03): 167-174.

On the nonnegative inverse eigenvalue problem of traditional matrices

^{}Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

Abstract

In this paper, at first for a given set of real or complex numbers $\sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $\sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

[1] T. J. Laey, Helena. Smigoc, On a Classic Example in the Nonnegative Inverse Eigenvalue Problem, vol. 17, ELA, July 2008, pp. 333-342.

[2] R. Lowey, D. London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978) 83-90.

[3] Helena Smigoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl. 393 (2004) 365-374.

[4] T. J. Laey, E. Meehan, A characterization of trace zero nonnegative 55matrices, Linear Algebra Appl. 302-303 (1999) 295-302.

[5] A. M. Nazari, F. Sherafat, On the inverse eigenvalue problem for nonnegative matrices of order two to five, Linear Algebra Appl. 436 (2012) 1771-1790.

[6] C. R. Johnson, Rowstochastic matrices similar to doubly stochasticmatrices, Linear and MultilinearAlgebra 10 (2) (1981) 113-130.

[7] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms and Applications, Oxford University Press, New York, 2005.

[8] H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Linear Algebra Appl. 28 (1979) 113-115.

[9] H. Pickmann, R. L. Soto, J. Egana, M. Salas, An inverse eigenvalue problem for symmetrical tridiagonal matrices, Computers and Mathematics with Applications 54 (2007) 699-708.