Authors

1 Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran

2 Mathematics and Informatics Research Group, ACECR, Tarbiat Modares University, P. O. Box: 14115-343, Tehran, Iran

3 Department of Mathematics, Payame Noor University, 19395-4797, Tehran, Iran

4 Islamic Azad University Branch of Azadshaher, Azadshaher, Iran

Abstract

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

Keywords

Main Subjects

[1] H. Wiener, Structural determination of paran boiling points, J. Am. Chem. Soc., 69 (1997) 17-20.
[2] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math., 66 (3) (2001) 211-249.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
[4] M. V. Diudea, G. Katona, I. Lukovitz and N. Trinajstic, Detour and Cluj-Detour Indices, Croat. Chem. Acta, 71 (1998) 459-471.
[5] P. E. John, Ueber die Berechnung des Wiener index fuerausgewaehlte Delta-dimensionale Gitterstrukturen, MATCH Commun. Math. Comput. Chem., 32 (1995) 207-219.
[6] R. Jalal Shahkoohi, O. Khormali and A. Mahmiani, The polynomial of detour index for a graph, World Applied Sciences Journal, 15 (10) (2011) 1473-1483.
[7] A. Mahmiani, O. Khormali and A. Iranmanesh, The edge versions of detour index, MATCH Commun. Math. Comput. Chem., 62 (2) (2009) 419-431.
[8] Sh. Safari Sabet, A. Mahmiani, O. Khormali, M. Farmani and Z. Bagheri, On the edge detour index polynomials, Middle-East Journal of Scienti c Research, 10 (4) (2011) 539-548.
[9] Sh. Safari Sabet, M. Farmani, O. Khormali, A. Mahmiani and Z. Bagheri, Relations among the edge detour index polynomials in nanotubes, Journal of Mathematical Nanoscience, 3 (1) (2013) 3-12.