Document Type: Research Paper

Authors

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new de nition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we de ne the fusion biorthogonal sequence, Bessel fusion basis, Hilbert fusion basis and obtain some character-izations of them. we study orthonormal fusion systems and Riesz fusion bases for Hilbert spaces. we consider the stability of fusion bases under small perturbations. We also general-ized a result of Paley-Wiener [16] to the situation of fusion basis.

Keywords

Main Subjects

[1] M. S. Asgari, G. Kavian, Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 51- 57

[2] M. S. Asgari, New characterizations of fusion frames (frames of subspaces), Proc. Indian Acad. Sci. (Math. Sci.) 119 No. 3 (2009), 1-14.

[3] M. S. Asgari, On the stability of fusion frames (frames of subspaces), Acta Math. Sci. Ser. B, 31(4), (2011), 1633-1642.

[4] M. S. Asgari, Operator-valued bases on Hilbert spaces, J. Linear and Topological Algebra, Vol. 02, No. 04, (2013), 201-218.

[5] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math. 345, Amer. Math. Soc. Providence, RI, 2004, 87-113.

[6] O. Christensen, An Introduction to frames and Riesz Bases, Birkhauser, Boston, 2003.

[7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27(1986), 1271-1283.

[8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72,(2), (1952), 341-366.

[9] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (2004), 180- 199.

[10] P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871-879.

[11] J.R. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.

[12] V. Kaftal, D. R. Larson and Sh. Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009), 6349- 6385.

[13] S. S. Karimizad, G-frames, g-orthonormal bases and g-Riesz bases, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 25-33.

[14] W. Rudin, Functional Analysis, McGrawHill. Inc, New York, (1991).

[15] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. (2006), 322, 437-452.

[16] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.