Lie higher derivations on $B(X)$

S. Ebrahimi*

Department of Mathematics, Payame Noor University,
P.O. Box 19395-3697, Tehran, Iran.

Received 13 July 2015; Revised 12 October 2015; Accepted 17 November 2015.

Abstract. Let X be a Banach space of $\dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X) \to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation D and a linear map $\tau : B(X) \to \mathbb{F}$ vanishing at commutators $[A,B]$ for all $A, B \in B(X)$ such that $L = D + \tau$.

Keywords: Lie higher derivations, higher derivations.

2010 AMS Subject Classification: Primary: 46M10 Secondary: 46H25, 46M18.

1. Introduction

Let X be a Banach space over \mathbb{F}, where \mathbb{F} is the real number field \mathbb{R} or the complex field \mathbb{C}. Recall that an additive map $L : B(X) \to B(X)$ is called a derivation if

$$L(AB) = L(A)B + AL(B) \quad \forall A, B \in B(X).$$

More generally, an additive map $L : B(X) \to B(X)$ is called a Lie derivation if $L([A,B]) = [L(A), B] + [A, L(B)]$ for all $A, B \in B(X)$. In recent years, Lie derivations has attracted the attentions of many researchers (see [1, 2, 8], and references therein). On the other hand, higher derivations were introduced and studied mainly in commutative rings and later, also in non-commutative rings and some operator algebras (see, for example, [3, 11] and the references therein). We first recall the concepts of higher derivations and Lie higher derivations.

*Corresponding author.
E-mail address: seebrahimi2272@gmail.com (S. Ebrahimi).
Definition 1.1 Let $L = (L_i)_{i \in \mathbb{N}}$ (\mathbb{N} denotes the set of natural numbers including 0) be a sequence of additive maps of a ring A such that $L_0 = \text{id}_A$. L is said to be a higher derivation if for every $n \in \mathbb{N}$ we have $L_n(AB) = \sum_{i+j=n} L_i(A)L_j(B)$ for all $A, B \in A$; a Lie higher derivation if for every $n \in \mathbb{N}$ we have $L_n([A,B]) = \sum_{i+j=n}[L_i(A), L_j(B)]$ for all $A, B \in A$.

It is clear that all higher derivations are Lie higher derivations. However, the converse is not true in general. Assume that $D = (D_n)_{n \in \mathbb{N}}$ is a higher derivation on a ring A. For any $n \in \mathbb{N}$, let $L_n = D_n + h_n$, where h_n is an additive map from A into its center vanishing on every commutator. It is easily seen that $(L_n)_{n \in \mathbb{N}}$ is a Lie higher derivation, but not a higher derivation if $h_n \neq 0$ for some n. Then a natural question is to ask whether or not every Lie higher derivations have the above form?

In [10], Fei and Chen discussed the properties of Lie higher derivations on nest algebras. Generalized higher derivations, jordan higher derivations and higher derivations were studied by many authors (see [6, 7, 9, 11, 12]). The purpose of this paper is to show that every Lie higher derivations on $B(X)$ is proper.

2. Lie higher derivations on $B(X)$

In this section, we give a characterization of Lie higher derivations of $B(X)$. The following is our main result which generalizes the main result in [4].

Theorem 2.1 Let X be a Banach space of dim$X > 2$ and $L : B(X) \to B(X)$ be a Lie higher derivation on $B(X)$. Then there exists an additive higher derivation D and a linear map $\tau : B(X) \to \mathbb{F}I$ vanishing at commutators $[A,B]$ for all $A, B \in B(X)$ such that $L = D + \tau$.

Proof. In the following, we always assume that $L = (L_n)_{n \in \mathbb{N}}$ is an Lie higher derivation of $B(X)$. We proceed by induction on $n \in \mathbb{N}$.

If $n = 1$, then by the definition of Lie higher derivations, L_1 is a Lie derivation of $B(X)$. So by ([4, Theorem 1.1]), there exists an additive derivation D and a linear map $\tau : B(X) \to \mathbb{F}I$ vanishing at commutators $[A,B]$ for all $A, B \in B(X)$ such that $L = D + \tau$.

For the convenience, in the sequel, take $x_0 \in X, f_0 \in X^*$ satisfying $f_0(x_0) = 1$. Let $P = x_0 \otimes f_0$ and $Q = I - P$ be idempotent of $B(X)$, it is obvious that $PQ = QP = 0$. Then $B(X) = B_{11} + B_{12} + B_{21} + B_{22}$, where $B_{11} = P B(X) P, B_{12} = P B(X) Q, B_{21} = Q B(X) P, B_{22} = Q B(X) Q$.

Thus by ([4, Lemmas 2.2-2.12]) we have;

$$
\begin{align*}
PL_1(P)P + QL_1(P)Q & \in \mathbb{F}I; \\
PL_1(Q)P + QL_1(Q)Q & \in \mathbb{F}I; \\
\Delta_1(PAQ + QAP) = P\Delta_1(A)Q + Q\Delta_1(A)P & \quad \text{where} \\
\Delta_1(A) = L_1(A) - (AT - TA) & \quad \text{and} \quad T = PL_1(P)Q - QL_1(P)P; \\
\Delta_1(P) & \in \mathbb{F}I, \quad \Delta_1(Q) \in \mathbb{F}I; \\
\Delta_1(B_{ij}) & \subseteq B_{ij} \quad \text{for} \quad 1 \leq i \neq j \leq 2; \\
\Delta_1(X_{ii}) & \in B_{ii} + \mathbb{F}I.
\end{align*}
$$

Assume that $L = (L_n)$ is a Lie higher derivation of $B(X)$. We proceed by induction on $n \in \mathbb{N}$. When $n = 1$, the conclusion is true by discussion. We now assume that $L_m(x) = D_m(x) + \tau_m(x)$ holds for all $x \in B(X)$ and for all $m < n \in \mathbb{N}$, where $\tau_m :$
\[B(X) \to Z(B(X)) \text{ is such that } \tau_n([x, y]) = 0 \text{ for all } x, y \in B(X) \text{ and } D_m(xy) = \sum_{i+j=m} D_i(x) D_j(y) \text{ for all } x, y \in B(X). \]

Moreover, we have the following properties:

\[
P_m : \begin{cases}
PL_m(P)P + QL_m(P)Q \in \mathbb{F}I; \\
PL_m(Q)P + QL_m(Q)Q \in \mathbb{F}I; \\
\Delta_m(PAQ + QAP) = P\Delta_m(A)Q + Q\Delta_m(A)P \quad \text{where} \\
\Delta_m(A) = L_m(A) - (AT - TA) \quad \text{and} \quad T = PL_m(P)Q - QL_m(P)P; \\
\Delta_m(P) \in \mathbb{F}I, \quad \Delta_m(Q) \in \mathbb{F}I; \\
\Delta_m(B_{ij}) \subseteq B_{ij}\text{ for } 1 \leq i \neq j \leq 2; \\
\Delta_m(X_{ii}) \in B_{ii} + \mathbb{F}I.
\end{cases}
\]

Our aim is to show that \(L_n \) also satisfies the similar properties and that \(L_n(x) = D_n(x) + \tau_n(x) \) holds for all \(x \in B(X) \) and \(\tau_n \) is linear map from \(B(X) \) into its center satisfying \(\tau_n([x, y]) = 0 \) for all \(x, y \in B(X) \). Therefore, by induction, the theorem is true.

We will prove it by several claims.

Claim 1. \(PL_n(P)P + QL_n(P)Q \in \mathbb{F}I \) and \(PL_n(Q)P + QL_n(Q)Q \in \mathbb{F}I \).

proof. Let \(x \in X, f \in X^* \). Then

\[
L_n(Px \otimes Q^* f) = L_n([P, Px \otimes Q^* f])
\]

\[
= \sum_{i+j=n} [L_i(P), L_j(Px \otimes Q^* f)]
\]

\[
= [L_n(P), Px \otimes Q^* f] + [P, L_n(Px \otimes Q^* f)] + \sum_{i+j=n; i \neq 0, n} [L_i(P), L_j(Px \otimes Q^* f)]
\]

\[
= L_n(P)Px \otimes Q^* f - Px \otimes Q^* f L_n(P) + PL_n(Px \otimes Q^* f)
\]

\[
- L_n(Px \otimes Q^* f)P + \sum_{i+j=n; i \neq 0, n} [L_i(P), L_j(Px \otimes Q^* f)]
\]

Multiplying this equation by \(P \) from the left and by \(Q \) from the right, we get, for all \(x \in X \) and \(f \in X^* \), that

\[
PL_n(P)(x \otimes f)Q = P(x \otimes f)QL_n(P)Q - \sum_{i+j=n; i \neq 0, n} [L_i(P), L_j(Px \otimes Q^* f)]Q.
\]

By \(P_m \), \(PL_m(P)P + QL_m(P)Q \in \mathbb{F}I \) and \(PL_m(Q)P + QL_m(Q)Q \in \mathbb{F}I \).

So \(P \sum_{i+j=n; i \neq 0, n} [L_i(P), L_j(Px \otimes Q^* f)]Q = 0 \).

Thus \(PL_n(P)P = \mu P \) for some \(\mu \in \mathbb{F} \). Hence \(QL_n(P)Q = \mu Q \), which implies that \(PL_n(P)P + QL_n(P)Q = \mu I \). Similarly we can prove \(PL_n(Q)P + QL_n(Q)Q \in \mathbb{F}I \).

Now we put \(T = PL_n(P)Q - QL_n(P)P \). For \(A \in B(X) \), define \(\Delta_n(A) = L_n(A) - (AT - TA) \). Also we can easily checked that \(\Delta_n[A, B] = [\Delta_n(A), B] + [A, \Delta_n(B)] \) for all \(A, B \in B(X) \).

Claim 2. \(\Delta_n(P) \in \mathbb{F}I \).
proof. Using Claim 1, we have

$$\Delta_n(P) = L_n(P) - (PT - TP) = PL_n(P)P + QL_n(P)Q \in \mathbb{F}I.$$

Claim 3. $\Delta_n(PAQ + QAP) = P\Delta_n(A)Q + Q\Delta_n(A)P$ for all $A \in B(X)$.

proof. Let $A \in B(X)$, then

$$\Delta_n(PAQ + QAP) = \Delta_n([P, [P, A]])$$

$$= \sum_{i+j=n} [\Delta_i(P), \Delta_j([P, A])]$$

$$= [\Delta_n(P), [P, A]] + [p, \Delta_n([P, A])] + \sum_{i+j=n, i\neq 0, n} [\Delta_i(P), \Delta_j([P, A])]$$

$$= [P, [P, \Delta_n(A)]] + \sum_{i+j=n, i\neq 0, n} [\Delta_i(P), \Delta_j([P, A])]$$

Since by Claim 2, $\Delta_i(P) \in \mathbb{F}I$, for $i < n$, so $\sum_{i+j=n, i\neq 0, n} [\Delta_i(P), \Delta_j([P, A])] = 0$.

So

$$\Delta_n(PAQ + QAP) = [P, [P, \Delta_n(A)]] = P\Delta_n(A)Q + Q\Delta_n(A)P.$$

Claim 4. $\Delta_n(Q) \in \mathbb{F}I$.

proof. Applying Claim 1, we have

$$P\Delta_n(Q)Q + Q\Delta_n(Q)P = \Delta_n(PQQ + QQP) = 0.$$

Thus $\Delta_n(Q) = PL_n(Q)Q + QL_n(Q)Q \in \mathbb{F}$.

Claim 5. $\Delta_n(B_{ij}) \subseteq B_{ij}$ for $1 \leq i \neq j \leq 2$.

proof. For any $X \in B_{12}$, we have

$$\Delta_n(X) = \Delta_n([P, X])$$

$$= \sum_{i+j=n} [\Delta_i(P), \Delta_j(X)]$$

$$= [P, \Delta_n(X)] + \sum_{i+j=n, i\neq 0, n} [\Delta_i(P), \Delta_j(X)]$$

$$= [P, \Delta_n(X)] + \sum_{j, j\neq 0, n} [P, \Delta_j(X)]$$

Since $\Delta_i(P) \in \mathbb{F}I$ is already shown, $\sum_{i+j=n, i\neq 0, n} [\Delta_i(P), \Delta_j(X)] = 0$ immediately follows.
So

\[\Delta_n(X) = P \Delta_n(x)Q - Q \Delta_n(X)P \]

Multiplying above equation by \(P \) from the right, we get

\[P \Delta_n(X)P = Q \Delta_n(X)P = Q \Delta_n(X)Q = 0 \]

Thus

\[\Delta_n(X) = P \Delta_n(X)P \in B_{12} \]

Similarly we can prove that \(\Delta_n(y) \subseteq B_{21} \) for any \(y \in B_{21} \).

Claim 6. There is a functional \(f_{ni} : B_{ii} \to \mathbb{F} \) such that \(\Delta_n(X_{ii}) - f_{ni}(X_{ii})I \in B_{ii} \) for all \(X_{ii} \in B_{ii} \), \(1 \leq i \leq 2 \).

proof. Let \(X_{ii} \in B_{ii} \), Applying Claim 3, we obtain

\[0 = \Delta_n(0) = \Delta_n(PX_{ii}Q + QX_{ii}P) = P \Delta_n(X_{ii})Q + Q \Delta_n(X_{ii})P \]

Then we can assume that \(\Delta_n(X_{11}) = a_{11} + a_{22} \) and \(\Delta_n(X_{22}) = b_{11} + b_{22} \), where \(a_{11}, b_{11} \in B_{11}, a_{22}, b_{22} \in B_{22} \). Also

\[0 = \Delta_n([X_{11}, X_{22}]) \]

\[= \sum_{i+j=n} [\Delta_i(X_{11}), \Delta_j(X_{22})] \]

\[= [a_{22}, X_{22}] + [X_{11}, a_{11}] + \sum_{i+j=n, i \neq 0, n} [\Delta_i(X_{11}), \Delta_j(X_{22})]. \]

By the property \(\mathbb{P}_m \): \(\Delta_i(X_{11}) \in B_{11} + \mathbb{F} I \) and \(\Delta_j(X_{22}) \in B_{22} + \mathbb{F} I \), one gets \(\sum_{i+j=n, i \neq 0, n} [\Delta_i(X_{11}), \Delta_j(X_{22})] = 0 \) which implies that \([a_{22}, X_{22}] = 0 \) for all \(X_{22} \in B_{22} \) and \([X_{11}, a_{11}] = 0 \) for all \(X_{11} \in B_{11} \).

Therefore, there exist scalars \(f_{n1}(X_{11}) \) and \(f_{n2}(X_{22}) \) such that \(a_{22} = f_{n1}(X_{11})Q \) and \(b_{11} = f_{n2}(X_{22})P \). So \(\Delta_n(X_{11}) - f_{n1}(X_{11})I \in B_{11} \) and \(\Delta_n(X_{22}) - f_{n2}(X_{22})I \in B_{22} \).

Claim 7. \(\Delta_n \) is additive on \(B_{12} \) and \(B_{21} \).

proof. Let \(X_{22} \in B_{22} \), \(X_{12} \in B_{12} \) and \(Y_{21} \in B_{21} \), by applying Claim 5, 6 we
have

$$\Delta_n[X_{22} + X_{21}, Y_{21}] = \sum_{i+j=n} [\Delta_i(X_{22} + X_{21}), \Delta_j(Y_{21})]$$

$$= [\Delta_n(X_{22} + X_{21}), Y_{21}] + [X_{22} + X_{21}, \Delta_n(Y_{21})]$$

$$+ \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22} + X_{21}), \Delta_j(Y_{21})]$$

$$= [\Delta_n(X_{22} + X_{21}), Y_{21}] + [X_{22}, \Delta_n(Y_{21})]$$

$$+ \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22} + X_{21}), \Delta_j(Y_{21})]$$

$$\Delta_n[X_{22} + X_{21}, Y_{21}] = \Delta_n[X_{22}, Y_{21}]$$

$$= \sum_{i+j=n} [\Delta_i(X_{22}), \Delta_j(Y_{21})]$$

$$= [\Delta_n(X_{22}) + \Delta_n(X_{21}), Y_{21}] + [X_{22}, \Delta_n(Y_{21})]$$

$$+ \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22}) + \Delta_i(X_{21}), \Delta_j(Y_{21})]$$

which implies that

$$[\Delta_n(X_{22} + X_{21}) - \Delta_n(X_{22}) - \Delta_n(X_{21}), Y_{21}] + \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22} + X_{21}), \Delta_j(Y_{21})]$$

$$- \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22}), \Delta_j(Y_{21})] = 0$$

But by P_m, we have

$$\sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22} + X_{21}), \Delta_j(Y_{21})] = \sum_{i+j=n;i\neq 0,n} [\Delta_i(X_{22}) + \Delta_i(X_{22}), \Delta_j(Y_{21})]$$

Thus we conclude that $[\Delta_n(X_{22} + X_{21}) - \Delta_n(X_{22}) - \Delta_n(X_{21}), Y_{21}] = 0$. By a similar way to we can prove that Δ_n is additive on B_{21} and similarly additivity of Δ_n on B_{12} can be deduced easily.

Now we define $D_n(A) = \Delta_n(PAQ) + \Delta_n(QAP) + \Delta_n(PAP) + \Delta_n(QAQ) - (f_1(PAP) - f_2(QAQ))I$. Then by Claim 5, 6 we have

Claim 8. For $B_{ij} \in B_{ij}$, $1 \leq i, j \leq 2$ we have

1. $D_n(B_{ij}) \in B_{ij}$, $1 \leq i, j \leq 2$;
2. $D_n(B_{12}) = \Delta_n(B_{12})$ and $D_n(B_{21}) = \Delta_n(B_{21})$;
3. $D_n(B_{11} + B_{12} + B_{21} + B_{22}) = D_n(B_{11}) + D_n(B_{12}) + D_n(B_{21}) + D_n(B_{22})$.

The following claims immediately follows from Claim 7 and Claim 8.

Claim 9. D_n is additive on B_{12} and B_{21}.
Claim 10. D_n is additive on B_{11} and B_{22}.
It follows similarly to proof of Lemma 2.12 in [4].

Claim 11. D_n is additive.
It follows similarly to proof of Lemma 2.13 in [4].

Claim 12. D_n has the following properties:

1. $D_n(A_{ii}B_{ij}) = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ij})$ \quad 1 \leq i \neq j \leq 2
2. $D_n(B_{ij}A_{jj}) = \sum_{t+k=n} D_t(B_{ij})D_k(A_{jj})$ \quad 1 \leq i \neq j \leq 2
3. $D_n(A_{ii}B_{ii}) = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ii})$

proof. Let $A_{ii} \in B_{ii}$ and $B_{ij} \in B_{ij}$, then

$$D_n(A_{ii}B_{ij}) = \Delta_n(A_{ii}B_{ij})$$
$$= \sum_{t+k=n} \left[D_t(A_{ii}), D_k(B_{ij}) \right]$$
$$= \sum_{t+k=n} \left[D_t(A_{ii}) + \tau_t(A_{ii}), D_k(B_{ij}) + \tau_t(B_{ij}) \right]$$
$$= \sum_{t+k=n} \left[D_t(A_{ii}), D_k(B_{ij}) \right]$$

Since $D_t(A_{ii}) \in B_{ii} + FI$ and $D_k(B_{ij}) \in B_{ij}$, then

$$D_n(A_{ii}B_{ij}) = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ij}).$$

Also

$$D_n(B_{ij}A_{jj}) = \Delta_n(B_{ij}A_{jj})$$
$$= \sum_{t+k=n} \left[D_t(B_{ij}), D_k(A_{jj}) \right]$$
$$= \sum_{t+k=n} \left[D_t(B_{ij}) + \tau_t(A_{jj}), D_k(B_{ij}) + \tau_t(A_{jj}) \right]$$
$$= \sum_{t+k=n} \left[D_t(B_{ij}), D_k(A_{jj}) \right]$$

Since $D_k(A_{jj}) \in B_{jj} + FI$ and $D_t(B_{ij}) \in B_{ij}$, then

$$D_n(B_{ij}A_{jj}) = \sum_{t+k=n} D_t(B_{ij})D_k(A_{jj}).$$
Furthermore

\[D_n(A_{ii}B_{ii}C_{ij}) = \sum_{t+k=n} D_t(A_{ii}B_{ii})D_k(C_{ij}) \]

\[= \sum_{t+k=n,k\neq 0} D_t(A_{ii}B_{ii})D_k(C_{ij}) + D_n(A_{ii}B_{ii})C_{ij} \]

But

\[D_n(A_{ii}B_{ii}C_{ij}) = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ii}C_{ij}) \]

\[= \sum_{t+k+l=n} D_t(A_{ii})D_k(B_{ij})D_l(C_{ij}) \]

\[= \sum_{t+k+l=n, L\neq 0} D_t(A_{ii})D_k(B_{ij})D_l(C_{ij}) + \sum_{t+k=n, l\neq 0} D_t(A_{ii})D_k(B_{ij})C_{ij} \]

Thus

\[D_n(A_{ii}B_{ii})C_{ij} = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ij})C_{ij} \]

Which implies that

\[D_n(A_{ii}B_{ii}) = \sum_{t+k=n} D_t(A_{ii})D_k(B_{ij}). \]

Claim 14. \(\Delta_n(B_{11} + C_{22}) - \Delta_n(B_{11}) - \Delta_n(C_{22}) \in \mathbb{F}I. \)

Claim 15. \(\Delta_n(A_{ij}B_{ji}) = \sum_{i+j=n} [\Delta_i(A_{ij}, \Delta_j(B_{ji})] \quad 1 \leq i \neq j \leq 2 \)

proof. Note that \([A_{12}, B_{21}] = [[A_{12}, P_2], B_{21}] \) holds true for all \(A_{12} \in B_{12} \) and \(B_{21} \in B_{21}. \) So we have

\[\Delta_n([B_{21}, C_{12}]) - D_n([B_{21}, C_{12}]) = \sum_{i+j=n} [\Delta_i(B_{21}, \Delta_j(C_{12})] - D_n(B_{21})C_{12} - D_n(C_{12}B_{21}) \]

\[= [\Delta_n(B_{21}), C_{12}] + [B_{21}, \Delta_n(C_{12})] \]

\[+ \sum_{i+j=n; i\neq 0, n} [\Delta_i(B_{21}), \Delta_j(D_{12})] - D_n(B_{21})C_{12} - D_n(C_{12}B_{21}) \]

\[= [D_n(B_{21}), C_{12}] + [B_{21}, D_n(C_{12})] \]

\[+ D_n(B_{21}C_{12}) - D_n(B_{21}C_{12}) \]

\[= D_n(A_{12})B_{21} - P_2D_n(A_{12})B_{21} - B_{21}D_n(A_{12})P_2 + B_{21}D_n(A_{12}) \]

\[+ A_{12}D_n(B_{21}) - D_n(B_{21})A_{12} - D_n(A_{12}B_{21}) + D_n(B_{21}A_{12}) \]
Which implies that
\[(D_n(A_{12})B_{21} + A_{12}D_n(B_{21}) - D_n(A_{12}B_{21})) + (D_n(B_{21}A_{12}) - D_n(B_{21})A_{12} - B_{21}D_n(A_{12})) = K \in \mathbb{F}I.\]

Using Claim 12 and multiplying B_{22} from the left in the above equality, We obtain
\[B_{22}D_n(B_{21}A_{12}) - B_{22}D_n(B_{21})A_{12} - B_{22}B_{21}D_n(A_{12}) = B_{22}K.\]

So
\[K = D_n(A_{12}B_{21} + A_{12}D_n(B_{21}) - D_n(A_{12}B_{21})) + (D_n(B_{21}A_{12}) - D_n(B_{21})A_{12} - B_{21}D_n(A_{12})) = 0.\]

Therefore
\[D_n(A_{12})B_{21} + A_{12}D_n(B_{21}) - D_n(A_{12}B_{21}) = -(D_n(B_{21}A_{12}) - D_n(B_{21})A_{12} - B_{21}D_n(A_{12}))\]
\[\in B_{11}\bigcap B_{22}\]

So we have
\[D_n(A_{12})B_{21} + A_{12}D_n(B_{21}) - D_n(A_{12}B_{21}) = 0 \text{ and } D_n(B_{21}A_{12}) - D_n(B_{21})A_{12} - B_{21}D_n(A_{12}) = 0\]
So D_n is a derivation.

Claim 16. For all $A \in B(X)$, $\Delta_n(A) - \Delta_n(PAQ) - \Delta_n(QAP) \in \mathbb{F}I$.

For any $A \in B(X)$ and Claim it is easy to checked that $\Delta_n(A) - \Delta_n(PAQ) - \Delta_n(QAP) \in \mathbb{F}I$.

Claim 17. $\tau_n([X,Y]) = 0$ for all $X, Y \in B(X)$.

proof. For any $X, Y \in B(X)$, we have
\[\tau_n([X,Y]) = \Delta_n([X,Y]) - D_n([X,Y])\]
\[= \sum_{i+j=n} [\Delta_i(X), \Delta_j(Y)] - D_n(XY) - D_n(YX)\]
\[= \sum_{i+j=n} [D_i(X) + \tau_i(X), D_j(Y) + \tau_j(Y)] - \sum_{i+j=n} D_i(X)D_j(Y) - D_j(Y)D_i(X)\]
\[= \sum_{i+j=n} [D_i(X), D_j(Y)] - \sum_{i+j=n} D_i(X)D_j(Y) - D_j(Y)D_i(X)\]
\[= 0\]

The proof of theorem is completed. ___

References