Document Type: Research Paper


Faculty of Mathematical Sciences and Statistics, Malayer University, P. O. Box 65719-95863, Malayer, Iran


The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when the exact solutions are polynomials. Also, an error analysis based on the use of the Bernoulli polynomials is provided under several mild conditions. Several examples are included to illustrate the efficiency and accuracy of the proposed technique and also the results are compared with the different methods.


Main Subjects

[1] V. Balakumar., K. Murugesan, Numerical solution of Volterra integral-algebraic equations using block pulse functions, Appl. Math. Comput., 263 (2015), pp. 165-170.

[2] J. Biazar, M. Eslami, Modified HPM for solving systems of Volterra integral equations of the second kind, J. King Saud Univ. Sci., 23 (1) (2011), pp. 35-39.

[3] H. Brunner, Collocation methods for Volterra integral and related functional equations, University Press, Cambridge, 2004.

[4] O. S. Budnikova, M. V. Bulatov, Numerical solution of integral-algebraic equations for multistep methods, Comput. Math. Math. Phys., 52(5) (2012), pp. 691-701.

[5] M. V. Bulatov, V. F. Chistyakov, The properties of differential-algebraic systems and their integral analogs, Memorial Uni. Newfoundland, preprint, 1997.

[6] J. R. Cannon, The One-dimensional heat equation, Cambridge Uni. Press, New York, 1984.

[7] C. W. Gear, Differential-algebraic equations, indices, and integral-algebraic equations, SIAM. J. Numer. Anal., 27 (1990), pp. 1527-1534.

[8] C. W. Gear, Differential-algebraic equations and index transformation, SIAM. J. Stat. Comput., 1 (1988), pp. 39-47.

[9] H. G. Golub, C.F. Van Loan, Matrix computations, Johns Hopkins Uni. Press, London, 1996.

[10] A. M. Gomilko, A Dirichlet problem for the biharmonic equation in a semi-infinite strip, J. Eng. Math., 46 (2003), pp. 253-268.

[11] J. Janno, L. von Wolfersdorf, Inverse problems for identification of memory kernels in viscoelasticity, Math. Meth. Appl. Sci., 20 (1997), pp. 291-314.

[12] B. Jumarhon, W. Lamb, S. McKee, T. Tang, A Volterra integral type method for solving a class of nonlinear initial-boundary value problems, Numer. Meth. Partial Diff. Eq., 12 (1996), pp. 265-281.

[13] V. V. Kafarov, B. Mayorga, C. Dallos, Mathematical method for analysis of dynamic processes in chemical reactors, Chem. Eng. Sci., 54 (1999), pp. 4669-4678.

[14] J. P. Kauthen, The numerical solution of integral-algebraic equations of index-1 by polynomial spline collocation methods, Math. Comp., 236 (2000), pp. 1503-1514.

[15] F. Mirzaee, Numerical computational solution of the linear Volterra integral equations system via rationalized Haar functions, J. King Saud Uni. Sci., 22 (4) (2010), pp. 265-268.

[16] F. Mirzaee, S. F. Hoseini, Solving systems of linear Fredholm integro-differential equations with Fibonacci polynomials, Ain Shams Engin. J., 5 (2014), pp. 271-283.

[17] F. Mirzaee, S. F. Hoseini, A Fibonacci collocation method for solving a class of Fredholm-Volterra integral equations in two-dimensional spaces, Beni-Suef Uni. J. Bas. App. Sci., 3 (2014), pp. 157-163.

[18] P. Natalini, A. Bernaridini, A Generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), pp. 155-163.

[19] M. Rabbani, K. Maleknejad, N. Aghazadeh, Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Appl. Math. Comput., 187 (2) (2007), pp. 1143-1146.

[20] G. Rzadkowski, S. Lepkowski, A Generalization of the Euler-Maclaurin Summation Formula: An Application to Numerical Computation of the Fermi-Dirac Integrals, J. Sci. Comput., 35 (2008), pp. 63-74.

[21] S. Pishbin, F. Ghoreishi, M. Hadizadeh, A posteriori error estimation for the Legendre collocation method applied to integral-algebraic Volterra equations, Electron. Trans. Numer. Anal., 38 (2011), pp. 327-346.

[22] N. Sah´yn,S.Y¨uzbas´y,M.G¨ulsu, A collocation approach for solving systems of linear Volterra integral equations with variable coefficients, Comput. Math. Appl., 62(2) (2011), pp. 755-769.

[23] Stewart, G.W. Matrix algorithms, Volume I: Basic Decompositions, SIAM, Philadelphia, 1998.

[24] A. Tahmasbi, O.S. Fard, Numerical solution of linear Volterra integral equations system of the second kind, Appl. Math. Comput., 201 (1) (2008), pp. 547-552.

[25] E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Mod., 37(6) (2012), pp. 4283-4294.

[26] F. Toutounian, E. Tohidi, S. Shateyi, A collocation method based on the Bernoulli operational matrix for solving high-order linear complex differential equations in a rectangular domain, Abst. Appl. Anal., Hindawi Pub. Co., 2013 (2013), pp. 1-12.

[27] L. V. Wolfersdorf, On identification of memory kernel in linear theory of heat conduction, Math. Meth. Appl. Sci., 17 (1994), pp. 919-932.

[28] L. H. Yang, J. H. Shen, Y. Wang, The reproducing kernel method for solving system of the linear Volterr aintegral equations with variable coefficients, J. Comput. Appl. Math., 236 (2012), pp. 2398-2405.

[29] A. I. Zenchuk, Combination of inverse spectral transform method and method of characteristics: Deformed Pohlmeyer equation, J. Nonlinear Math. Phys., 15 (2008), pp. 437-448.