Some results on higher numerical ranges and radii of quaternion matrices

Gh. Aghamollaeia, N. Haj Aboutalebib

aDepartment of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
bDepartment of Mathematics, Shahrood Branch, Islamic Azad University, Shahrood, Iran.

Received 20 December 2015; Revised 5 February 2016; Accepted 11 March 2016.

Abstract. Let n and k be two positive integers, $k \leq n$ and A be an $n \times n$ square quaternion matrix. In this paper, some results on the $k-$numerical range of A are investigated. Moreover, the notions of $k-$numerical radius, right $k-$spectral radius and $k-$norm of A are introduced, and some of their algebraic properties are studied.

\copyright 2015 IAUCTB. All rights reserved.

Keywords: $k-$Numerical radius; right $k-$spectral radius; $k-$norm, quaternion matrices.

2010 AMS Subject Classification: 15A60; 15B33; 15A18.

1. Introduction and preliminaries

As usual, let \mathbb{R} and \mathbb{C} denote the field of the real and complex numbers, respectively. Moreover, let \mathbb{H} be the four-dimensional algebra of quaternions over \mathbb{R} with the standard basis $\{1, i, j, k\}$ and multiplication rules:

\[i^2 = j^2 = k^2 = -1, \]
\[ij = k = -ji, \quad jk = i = -kj, \quad ki = j = -ik, \quad \text{and} \]
\[1q = q1 = q \quad \text{for all} \ q \in \{1, i, j, k\}. \]

*Corresponding author.
E-mail address: aghamollaei@uk.ac.ir ; aghamollaei1976@gmail.com (Gh. Aghamollaei).
If $q \in \mathbb{H}$, then there are $\alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that
\[q = \alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k. \]

This representation of q is called the canonical form of q. We define $Re \ q = \alpha_0$, the real part of q; $Co \ q = \alpha_0 + \alpha_1 i$, the complex part of q; $Im \ q = \alpha_1 i + \alpha_2 j + \alpha_3 k$, the imaginary part of q; $\bar{q} = \alpha_0 - \alpha_1 i - \alpha_2 j - \alpha_3 k$, the conjugate of q; $|q| = \sqrt{\alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2} = (qq)^{\frac{1}{2}} = (\bar{q}q)^{\frac{1}{2}}$, the norm of q. Moreover, the set of all $q \in \mathbb{H}$ with $Re \ q = 0$ is denoted by \mathbb{P}, and $q \in \mathbb{H}$ is called a unit quaternion if $|q| = 1$.

Two quaternions x and y are said to be similar, denoted by $x \sim y$, if there exists a nonzero quaternion $q \in \mathbb{H}$ such that $x = q^{-1}yq$. It is known, e.g., see [4, Theorem 2.2], that $x \in \mathbb{H}$ is similar to $y \in \mathbb{H}$ if and only if $Re \ x = Re \ y$ and $|Im \ x| = |Im \ y|$. Obviously, \sim is an equivalence relation on the quaternions. The equivalence class containing x is denoted by $[x]$.

Let \mathbb{H}^n be the collection of all n-column vectors with entries in \mathbb{H}, and $M_{m \times n}(\mathbb{H})$ (for the case $m = n$, $M_n(\mathbb{H})$) be the set of all $m \times n$ quaternion matrices. For any $m \times n$ quaternion matrix $A = (a_{ij}) \in M_{m \times n}(\mathbb{H})$, we define $\bar{A} = (\bar{a}_{ij}) \in M_{m \times n}(\mathbb{H})$, the conjugate of A; $A^T = (a_{ji}) \in M_{n \times m}(\mathbb{H})$, the transpose of A; $A^* = (\bar{a})^T \in M_{n \times m}(\mathbb{H})$, the conjugate transpose of A.

Let $A \in M_n(\mathbb{H})$. The matrix A is said to be normal if $A^* A = AA^*$; Hermitian if $A^* = A$; skew-Hermitian if $A^* = -A$; and unitary if $A^* A = I_n$, where I_n is the $n \times n$ identity matrix. A quaternion λ is called a (right) eigenvalue of A if $Ax = x\lambda$ for some nonzero $x \in \mathbb{H}^n$. The set of all right eigenvalues of A is denoted by $\sigma_r(A)$; i.e., the right spectrum of A. Also, the right spectral radius of A is defined as $\rho_r(A) = \max \{|z| : z \in \sigma_r(A)\}$.

If λ is an eigenvalue of A, then any element in $[\lambda]$ is also an eigenvalue of A. Moreover, it is known, e.g., see [4, Theorem 5.4], that A has, counting multiplicities, exactly n (right) eigenvalues which are complex numbers with nonnegative imaginary parts. These eigenvalues are called the standard right eigenvalues of A.

Throughout the paper, we assume that k and n are positive integers, and $k \leq n$. A matrix $X \in M_{n \times k}(\mathbb{H})$ is called an isometry if $X^*X = I_k$, and the set of all $n \times k$ isometry matrices is denoted by $\mathcal{X}_{n \times k}$. For the case $k = n$, $\mathcal{X}_{n \times n}$ is denoted by \mathcal{U}_n which is the set of all $n \times n$ quaternionic unitary matrices. For $A \in M_n(\mathbb{H})$, the notion of k-numerical range of A which was first introduced in [1], is defined and denoted by
\[
W^k(A) = \left\{ \frac{1}{k} tr(X^*AX) : X \in \mathcal{X}_{n \times k} \right\}. \tag{1}
\]

The sets $W^k(A)$, where $k \in \{1, 2, \ldots, n\}$, are generally called the higher numerical ranges of A. Let A have the standard right eigenvalues $\lambda_1, \ldots, \lambda_n$, counting multiplicities. The right k–spectrum of A is defined and denoted by
\[
\sigma_r^k(A) = \left\{ \frac{1}{k} \sum_{j=1}^{k} \alpha_{ij} : 1 \leq i_1 < i_2 < \cdots < i_k \leq n, \ \alpha_{ij} \in [\lambda_{ij}] \right\}.
\]

Obviously, if $\alpha \in \sigma_r^k(A)$, then $[\alpha] \subseteq \sigma_r^k(A)$. Moreover, $\sigma_r^k(A) \subseteq W^k(A)$, $\sigma_r^k(A) = \sigma_r(A)$, and
\[
W^1(A) = W(A) := \{ x^*Ax : x \in \mathbb{H}^n, x^*x = 1 \}
\]
is the standard quaternionic numerical range of A, which was first studied in 1951 by Kippenhahn [2]. The numerical radius of A is also defined as $r(A) = \max\{|z| : z \in W(A)\}$. Now, in the following theorem, we list some other properties of the k–numerical range of quaternion matrices which can be found in [1].

Theorem 1.1 Let $A \in M_n(\mathbb{H})$. Then the following assertions are true:

(a) $W^k(\alpha I + \beta A) = \alpha + \beta W^k(A)$, where $\alpha, \beta \in \mathbb{R}$;

(b) $W^k(A + B) \subseteq W^k(A) + W^k(B)$, where $B \in M_n(\mathbb{H})$;

(c) $W^k(U^*AU) = W^k(A)$, where $U \in U_n$;

(d) $aW^k(A) = W^k(A)$, where $a \in \mathbb{H}$ is such that $|a| = 1$;

(e) $W^k(A^*) = W^k(A)$;

(f) $W^{k+1}(A) \subseteq \text{conv}(W^k(A))$;

(g) $W^n(A) \subseteq \mathbb{R}$ if and only if A is Hermitian;

(h) $W^n(A) = \{\frac{1}{n} \text{tr} A\}$ if and only if A is Hermitian.

In this paper, we are going to study some properties of the k–numerical ranges and radii of quaternionic matrices. To this end, in the next section, we state some other properties of the k–numerical range of quaternion matrices. We also introduce and study, as in the complex case, the notions of right k–spectral, k–numerical radius and the k–norm of quaternion matrices. Moreover, we establish some relations among them.

2. **Main results**

We begin this section by a result about quaternion numbers which is important to study some properties of the k–numerical range of quaternion matrices.

Theorem 2.1 Let $S \subseteq \mathbb{H}$ be such that $\lambda \in S$ implies that $|\lambda| \subseteq S$. Then

$$\text{conv}(\mathbb{C} \cap S) = \mathbb{C} \cap \text{conv}(S).$$

Proof. It is clear that $\text{conv}(\mathbb{C} \cap S) \subseteq \mathbb{C} \cap \text{conv}(S)$. Conversely, let $\lambda = \sum_{l=1}^{m} \theta_l(a_l + b_l i + c_l j + d_l k) \in \mathbb{C} \cap \text{conv}(S)$, where $\theta_l \geq 0$, $\sum_{l=1}^{m} \theta_l = 1$, and $a_l + b_l i + c_l j + d_l k \in S$ for all $l = 1, \ldots, m$. Thus, we have

$$\lambda = \sum_{l=1}^{m} \theta_l(a_l + b_l i), \text{ and } \sum_{l=1}^{m} \theta_l(c_l j + d_l k) = 0.$$

Since $a_l \pm i\sqrt{b_l^2 + c_l^2 + d_l^2} \in [a_l + b_l i + c_l j + d_l k]$, by our assumption, we have $a_l \pm i\sqrt{b_l^2 + c_l^2 + d_l^2} \in \mathbb{C} \cap S$ for all $l = 1, \ldots, m$. So, for every $l \in \{1, \ldots, m\}$, we have

$$a_l + b_l i = t(a_l + i\sqrt{b_l^2 + c_l^2 + d_l^2}) + (1 - t)(a_l - i\sqrt{b_l^2 + c_l^2 + d_l^2}) \in \text{conv}(\mathbb{C} \cap S),$$

where

$$t = \frac{b_l + \sqrt{b_l^2 + c_l^2 + d_l^2}}{2\sqrt{b_l^2 + c_l^2 + d_l^2}}$$

for the case $\sqrt{b_l^2 + c_l^2 + d_l^2} \neq 0$, and for the case $b_l = c_l = d_l = 0$, $t \in [0, 1]$ is arbitrary. Therefore, $\lambda \in \text{conv}(\mathbb{C} \cap S)$. Hence, $\mathbb{C} \cap \text{conv}(S) \subseteq \text{conv}(\mathbb{C} \cap S)$. This completes the proof.

By Theorem 2.1, we have the following results.
Corollary 2.2 Let $A \in M_n(\mathbb{H})$. Then

$$\text{conv}(C \bigcap W^k(A)) = C \bigcap \text{conv}(W^k(A)).$$

Corollary 2.3 (see also [1, Theorem 2.4(b)]); Let $A \in M_n(\mathbb{H})$. Then

$$\text{conv}(C \bigcap \sigma^k_r(A)) = C \bigcap \text{conv}(\sigma^k_r(A)).$$

Now, we introduce the notions of right k–spectral, k–numerical radius and the k–norm of quaternion matrices. To access more information about the similar results in the complex case, see [3].

Definition 2.4 Let $A \in M_n(\mathbb{H})$. The right k–spectral radius, the k–numerical radius, and the k–norm of A are defined and denoted, respectively, by

$$\rho^{(k)}_r(A) = \max \{|z| : z \in \sigma^k_r(A)\},$$

$$r^{(k)}(A) = \max \{|z| : z \in W^k(A)\}, \text{ and}$$

$$\|A\|_{(k)} = \frac{1}{k}\max\{|\text{tr}(X^*AY)| : X, Y \in \mathcal{X}_{n\times k}\}.$$

It is clear that $\rho^{(1)}_r(A) = \rho_r(A)$ and $r^{(1)}(A) = r(A)$. So, the notions of right k-spectral radius and k-numerical radius are generalizations of the classical spectral radius and numerical radius, respectively. In the following theorem, we state some basic properties of $r^{(k)}(.)$.

Theorem 2.5 Let $A, B \in M_n(\mathbb{H})$ and $c \in \mathbb{R}$. Then the following assertions are true:

(a) $r^{(k)}(A) \geq 0$;
(b) $r^{(k)}(cA) = |c|r^{(k)}(A)$;
(c) $r^{(k)}(U^*AU) = r^{(k)}(A)$, where $U \in \mathcal{U}_n$;
(d) $r^{(k)}(A) = r^{(k)}(A^*)$;
(e) Let $k < n$. Then $r^{(k)}(A) = 0$ if and only if $A = 0$. For the case $k = n$, $r^{(n)}(A) = 0$ if and only if A is Hermitian and $\text{tr}A = 0$;
(f) $r^{(k)}(A + B) \leq r^{(k)}(A) + r^{(k)}(B)$;
(g) $r^{(n)}(A) \leq r^{(n-1)}(A) \leq \cdots \leq r^{(1)}(A) = r(A)$.

Proof. The part (a) follows from Definition 2.4. The parts (b), (c), (d) and (f) follow easily from Theorem 1.1.

To prove (e), at first, we assume that $r^{(k)}(A) = 0$ and $k < n$. We will show that $A = 0$. Since $r^{(k)}(A) = 0$, for any $z \in W^k(A)$, $|z| = 0$. Therefore, $W^k(A) = \{0\}$, and hence, by Theorem 1.1(g), A is Hermitian. Now, since $k < n$, by a simple calculation we see that $A = 0$. The converse is trivial. For the case $k = n$, let A have the standard right eigenvalues $\lambda_1, \ldots, \lambda_n$, counting multiplicities, and $r^{(n)}(A) = 0$. Then $W^n(A) = \{0\}$. Since $\frac{1}{n}\text{tr}A \in \sigma^n(A)$, by [1, Theorem 2.5(e)], $W^n(A) = \{0\} = \left\{\frac{1}{n}\text{tr}A\right\}$. So, $\text{tr}A = 0$ and also by Theorem 1.1(h), A is Hermitian. The converse is trivial.

To prove (g), let $1 < k \leq n$ be given. Then by Theorem 1.1(f), we have $W^k(A) \subseteq \text{conv}(W^{k-1}(A))$. Now, let $r^{(k)}(A) = |\mu|$ for some $\mu \in W^k(A)$. Hence, $\mu \in \text{conv}(W^{k-1}(A))$.

Then there are nonnegative real numbers \(t_1, \ldots, t_n \in \mathbb{R} \) summing to 1, and \(\alpha_1, \ldots, \alpha_n \in W^{k-1}(A) \) such that \(\mu = \sum_{i=1}^n t_i \alpha_i \). Therefore,

\[
\rho_r^{(k)}(A) = |\mu| \leq \sum_{i=1}^n t_i |\alpha_i| \leq \sum_{i=1}^n t_i r^{(k-1)}(A) = r^{(k-1)}(A).
\]

This completes the proof. \(\square \)

Using Definition 2.4 and this fact that \(\sigma_r^{(k)}(A) \subseteq W^k(A) \), we have the following result which states the relation between \(\rho_r^{(k)}(.) \), \(r^{(k)}(.) \) and \(\|\cdot\|_{(k)} \).

Proposition 2.6 Let \(A \in M_n(\mathbb{H}) \). Then

\[
\rho_r^{(k)}(A) \leq r^{(k)}(A) \leq \|A\|_{(k)}.
\]

The following example shows that in Proposition 2.6, the equality \(\rho_r^{(k)}(A) = r^{(k)}(A) \) does not hold in general.

Example 2.7 Let \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \in M_3(\mathbb{H}) \). Then \(A \) is a matrix with eigenvalues 1, 0, 0.

Therefore, \(\rho_r^{(2)}(A) = \frac{1}{2} \). By a simple calculation, we have \(r^{(2)}(A) = 1 \). So, \(\rho_r^{(2)}(A) = \frac{1}{2} < 1 = r^{(2)}(A) \).

In the following proposition, we show that the left inequality in Proposition 2.6 is sharp. It follows easily from [1, Theorem 2.13].

Proposition 2.8 Let \(A \in M_n(\mathbb{H}) \) be a Hermitian matrix. Then

\[
\rho_r^{(k)}(A) = r^{(k)}(A).
\]

In the following theorem, we state some basic properties of \(\|A\|_{(k)} \).

Theorem 2.9 Let \(A, B \in M_n(\mathbb{H}) \) and \(c \in \mathbb{R} \). Then the following assertions are true:

(a) \(\|A\|_{(k)} \geq 0 \);
(b) \(\|cA\|_{(k)} = |c|\|A\|_{(k)} \);
(c) Let \(k < n \). Then \(\|A\|_{(k)} = 0 \) if and only if \(A = 0 \);
(d) \(\|A + B\|_{(k)} \leq \|A\|_{(k)} + \|B\|_{(k)} \);
(e) \(\|A\|_{(n)} \leq \|A\|_{(n-1)} \leq \ldots \leq \|A\|_{(1)} \).

Proof. The assertions in (a), (b), and (d) follow easily from Definition 2.4.

To prove (c), at first, we assume that \(\|A\|_{(k)} = 0 \) and \(k < n \). Then by Theorem 2.5(e) and Proposition 2.6, we have \(A = 0 \). The converse is trivial.

For (e), let \(1 < k \leq n \). Moreover, let \(X = [x_1, \ldots, x_n], Y = [y_1, \ldots, y_n] \in \mathcal{X}_{n \times k} \) be given.
Therefore, we have

\[
\frac{1}{k} \left| \sum_{j=1}^{k} x_j^* A y_j \right| = \frac{1}{k} \left| \sum_{j=1}^{k} \frac{1}{k-1} \sum_{i=1}^{k} x_i^* A y_i \right|
\]

\[
\leq \frac{1}{k} \sum_{j=1}^{k} \frac{1}{k-1} \sum_{i=1 \atop i \neq j}^{k} x_i^* A y_i
\]

\[
\leq \frac{1}{k} \sum_{j=1}^{k} \| A \|_{(k-1)}
\]

\[
= \| A \|_{(k-1)}.
\]

So, \(\| A \|_{(k)} \leq \| A \|_{(k-1)} \). This completes the proof.

\[\blacksquare\]

References

