Document Type: Research Paper


1 Department of Mathematics, Faculty of Science Mugla Sitk Kocman University, Mugla 48000, Turkey

2 Department of Mathematics, Graduate School of Natural and Applied Sciences Mugla Sitki Kocman University, Mugla 48000, Turkey


In this study, we investigate the further properties of quasi irresolute topological groups defi ned in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,\tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then $G$ is generated by $V$. Moreover it is proven that a subgroup $H$ of a quasi irresolute topological group $(G,*,\tau)$ is semi-discrete if and only if it has a semi-isolated point.


Main Subjects

[1] A.V. Arhangel’skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. 1, Atlantis Press/World Scientific, Amsterdam– Paris, 2008.

[2] N. Biswas, On characterizations of semi-continuous functions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 48 (1970), 399-402.

[3] E. Bohn, J. Lee, Semi-topological groups, Amer. Math. Monthly, 72 (1965), 996-998.

[4] M. S. Bosan et al., On quasi irresolute and semi-irr-topological groups, Afindad, 80(574) (2014), 1241-1252.

[5] M. S. Bosan, s-topological Groups and Related Structures, Ph.D Thesis, 2015.

[6] M. S. Bosan, M. D. Khan, L.D.R. Ko˘cinac, On s-topological groups, Math. Morav.,18 (2) (2014), 35-44.

[7] N. Bourbaki. General Toplogy Chapters1-4. Springer-Verlag Berlin, 1989.

[8] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.

[9] S. G. Crossley, S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22 (1971), 123-126.

[10] S. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233–254.

[11] P. Das, Note on semi connectedness, Indian J.Mech.Math., 12(1) (1974), 31-34.

[12] M. D. Khan, M. S. Bosan, A note on s-topological groups, Life Sci J., 11(7s) (2014), 370-374.

[13] M. D. Khan, A. Siab, L. D. R. Ko˘cinac, Irresolute topological groups, Math. Morav., 19 (1) (2015), 73-80.

[14] M. D. Khan, S. Habib, M. S. Bosan, Quasi S-Topoloical groups, Life Sci J., 27 (1) (2015), 53-57.

[15] R. M. Latif, On characterizations of mappings, Soochow Journal of Mathematics, 19 (4) (1993), 475 - 495.

[16] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.

[17] R. Noreen, M. D. Khan, Semi Connectedness in s-topological groups, J. of Adv. Stud. in Topology, 7(2) (2016), 54-59.

[18] R. Noreen, M. S. Bosan, M. D. Khan, Semi Connectedness in irresolute topological groups, Life Sci J., 27(6) (2015), 4981-4985.

[19] T. M. Nour, A note on some applications of semi-open sets, Internat. J.Math. Sci., 21 (1998), 205-207.

[20] T. Oner, M. B. Kandemir, B. Tanay, Semi-Topological Groups with Respect to Semi continuity and irreso- luteness, J. of Adv. Stud. in Topology, 4(3) (2013), 23-28.

[21] T. Oner, A. ¨ Ozek, On Semi Topological Groups With Respect To Irresoluteness, Int J Recent Sci Res, 6 (12) (2015), 7914-7916.