Document Type: Research Paper


1 Department of Mathematics, Birjand Education, Birjand, Iran

2 Farhangian University, Shahid Bahonar Campus, Birjand, Iran

3 Department of Mathematics, University of Birjand, Birjand, Iran


Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=\langle[g,\alpha_{1},\ldots,\alpha_{m}] |g\in G‎,\‎alpha_{1},ldots,\alpha_{m}\in Aut(G)\rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.


Main Subjects

[1] C. Chi, M. Chi, and G. Silberberg, Abelian groups as autocommutator groups. Arch. Math. (Basel). 90 (6) (2008), 490-492.

[2] P, Hall, Some sufficient conditions for a group to be nilpotent. Illinois J. Math. 2 (1958), 787-801.

[3] P. Hegarty, The absolute centre of a group. J. Algebra 169 (3) (1994), 929-935.

[4] C. Hillar and D. Rhea, Automorphisms of finite abelian groups. Amer. Math. Monthly. 114 (10) (2007), 917-922 .

[5] M. R. R. Moghaddam, F. Parvaneh and M. Naghshineh, The lower autocentral series of abelian groups. Bull. Korean Math. Soc. 48 (1) (2011), 79-83.

[6] M. M. Nasrabadi and A. Gholamian, On A-nilpotent abelian groups. Proc. Indian Acad. Sci. (Math. Sci.) 124 (4) (2014), 517-525.

[7] M. M. Nasrabadi and A. Gholamian, On finite A-perfect abelian groups. Int. J. Group Theory. 1 (3) (2012), 11-14.

[8] J. J. Rotman, An Introduction to the Theory of Groups. 4th ed, Springer-Verlag, 1995.