Shah, R., Zada, A. (2017). Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces. Journal of Linear and Topological Algebra (JLTA), 06(01), 45-53.

R Shah; A Zada. "Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces". Journal of Linear and Topological Algebra (JLTA), 06, 01, 2017, 45-53.

Shah, R., Zada, A. (2017). 'Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces', Journal of Linear and Topological Algebra (JLTA), 06(01), pp. 45-53.

Shah, R., Zada, A. Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces. Journal of Linear and Topological Algebra (JLTA), 2017; 06(01): 45-53.

Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces

^{1}Department of Mathematics, University of Peshawar, Pakistan.

^{2}Department of Mathematics, University of Peshawar, Peshawar, Pakistan.

Abstract

In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We furnish suitable illustrative examples. In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We furnish suitable illustrative examples.

[1] M. Abbas, M. Ali khan, S. Randenovic, Common coupled xed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195-202. [2] S. Czerwik, Contraction mapping in b-metric spaces, Acta Mathematica et Informatica Universitatis Os- traviensis, 1 (1993), 5-11. [3] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and appli- cations, Nonlinear Analysis. Theory, Methods and Applications, 65 (7) (2006), 1379-1393. [4] V. Lakshmikantham, L. Ciric, Coupled xed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. Theory, Methods and Applications, 70 (12) (2009), 4341-4349. [5] H. Rahimi, P. Vetro, G. Soleimani Rad, Coupled xed point results for T-contractions on cone metric spaces with applications, Math. Notes, 98 (1) (2015), 158-167. [6] H. Rahimi, S. Radenovic, G. Soleimani Rad, Cone metric type space and new coupled xed point theorems, J. Nonlinear. Anal. Optimization (JNAO), 6 (1) (2015), 1-9. [7] S. Sedghi, I. Altun, N. Shobe, M. Salahshour, Some properties of S-metric space and xed point results, Kyung pook Math. J., 54 (2014), 113-122. [8] S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani, S. Radenovic, Common xed point of four maps in Sb-metric spaces, J. Linear. Topol. Algebra., 5 (2) (2016), 93-104. [9] S. Sedghi, A. Gholidahneh, K. P. R. Rao, Common xed point of two R- weakly commuting mappings in Sb-metric spaces, Mathematical Science letters (to appear). [10] S. Sedghi, N. Shobe, A. Aliouche, A generalization of xed point theorem in S-metric spaces, Mat. Vesnik, 64 (2012), 258-266. [11] S. Sedghi, N. Shobe, T. Dosenovic, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. Appl., 20 (1) (2015), 55-67.

[7] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis., 65 (2006), 1379 -1393. [8] A. Branciari, A xed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sciences., 29 (9) (2002), 531-536. [9] L. G. Haung, X. Zhang, Cone metric spaces and xed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468-1476. [10] G. Jungck, Commuting maps and xed points, Am. Math. Monthly. 83 (1976), 261-263. [11] G. Jungck, Compatible mappings and common xed points, Int. J. Math. Sci. 9 (4) (1986), 771 -779. [12] G. Jungck, Common xed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983. [13] G. Jungck, N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325 (2) (2007), 1003-1012. [14] V. Lakshmikantham, L. Ciric, Coupled xed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, 70 (2009), 4341-4349. [15] P. P. Murthy, K. Tas, New common xed point theorems of Gregus type for R-weakly commuting mappings in 2-metric spaces, Hacet. J. Math. Stat. 38 (2009), 285 -291. [16] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297. [17] R. P. Pant, Common xed points of noncommuting mappings, J. Math. Anal. Appl., 188 (1994), 436-440. [18] V. Popa, M. Mocanu, Altering distance and common xed points under implicit relations, Hacet. J. Math. Stat. 38 (2009), 329-337. [19] H. Rahimi, P. Vetro, G. Soleimani Rad, Coupled xed-point results for T-contractions on cone metric spaces with applications, Math. Notes. 98 (1) (2015), 158-167. [20] H. Rahimi, G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing (LAP), Germany, 2012. [21] R. Shah, A. Zada, Some common xed point theorems of compatible maps with integral type contraction in G-metric spaces, Proceedings of the Institute of Applied Mathematics, 5 (1) (2106), 64-74. [22] R. Shah, A. Zada and T. Li, New common coupled xed point results of integral type contraction in generalized metric spaces, J. Anal. Num. Theor., 4 (2) (2106), 145-152. [23] W. Shatanawi, Coupled xed point theorems in generalized metric spaces, Hacet. J. Math. Stat. 40 (3) (2011), 441-447. [24] A. Zada, R. Shah, T. Li, Integral type contraction and coupled coincidence xed point theorems for two pairs in g-metric spaces, Hacet. J. Math. Stat. 45 (5) (2016), 1475-1484.