Otadi, M. (2017). Initial value problems for second order hybrid fuzzy differential equations. Journal of Linear and Topological Algebra (JLTA), 06(02), 163-169.

M. Otadi. "Initial value problems for second order hybrid fuzzy differential equations". Journal of Linear and Topological Algebra (JLTA), 06, 02, 2017, 163-169.

Otadi, M. (2017). 'Initial value problems for second order hybrid fuzzy differential equations', Journal of Linear and Topological Algebra (JLTA), 06(02), pp. 163-169.

Otadi, M. Initial value problems for second order hybrid fuzzy differential equations. Journal of Linear and Topological Algebra (JLTA), 2017; 06(02): 163-169.

Initial value problems for second order hybrid fuzzy differential equations

^{}Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Abstract

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differential equations with initial value condition under generalized H-differentiability. We prove the existence and uniqueness of solution for nonlinearities satisfying a Lipschitz condition.

[1] S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos, Solitons & Fractals 26 (2005) 1337-1341.

[2] S. Abbasbandy, T. Allaviranloo, O. Lopez-Pouso, J.J. Nieto, Numerical methods for fuzzy differential inclusions, Computers & Mathematics with Applications, 48 (2004) 1633-1641.

[3] S. Abbasbandy, M. Otadi, Numerical solution of fuzzy polynomials by fuzzy neural network, Appl. Math. Comput. 181 (2006) 1084-1089.

[4] S. Abbasbandy, M. Otadi, M. Mosleh, Numerical solution of a system of fuzzy polynomials by fuzzy neural network, Inform. Sci., 178 (2008) 1948-1960.

[5] G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.

[6] T. Allahviranloo, E. Ahmady, N. Ahmady, Nth-order fuzzy linear differential eqations, Inform. Sci., 178 (2008) 1309-1324.

[7] T. Allahviranloo, N. A. Kiani, M. Barkhordari, Toward the existence and uniqueness of solutions of secondorder fuzzy differential equations, Inform. Sci., 179 (2009) 1207-1215.

[8] T. Allahviranloo, N. A. Kiani, N. Motamedi, Solving fuzzy differential equations by differential transformation method, Inform. Sci., 179 (2009) 956-966.

[9] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005) 581-599.

[10] B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential eqations under generalized differentiability, Inform. Sci., 177 (2007) 1648-1662.

[11] J. J. Buckley, T. Feuring Fuzzy differential equations, Fuzzy Sets and Systems 110 (2000) 69-77.

[12] Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos Solitons & Fractals, 38 (2008) 112-119.

[13] S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Systems Man Cybemet. 2 (1972) 30-34.

[14] M. Chen, C. Wu, X. Xue, G. Liu, On fuzzy boundary value problems, Inform. Sci., 178 (2008) 1877-1892.

[15] P. Diamond, P. Kloeden, Metric sapce of fuzzy sets, World scientific, Singapore, 1994.

[16] D. Dubois, H. Prade, Towards fuzzy differential calculus: Part3, differentiation, Fuzzy Sets and Systems 8 (1982) 225-233.

[17] D. N.Georgiou, J. J. Nieto, R. R. Lopez, Initial value problems for higher-order fuzzy differential equations, Nonlinear analysis 63 (2005) 587-600.

[18] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986) 31-43.

[19] M. T. Hagan, H. B. Demuth, M. Beale, Neural Network Design, PWS publishing company, Massachusetts, 1996.

[20] H. Kim, R. Sakthivel, Numerical solution of hybrid fuzzy differential equations using improved predictorcorrector method, Commun Nonlinear Sic. Numer. Simulat, 17 (2012) 3788-3794.

[21] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301-317.

[22] H. Kim and R. Sakthivel, Numerical solution of hybrid fuzzy differential equations using improved predictorcorrector method, Commun nonlinear Sci numer simulat, 17 (2012) 3788-3794.

[23] P. V. Krishnamraju, J. J. Buckley, K. D. Relly, Y. Hayashi, Genetic learning algorithms for fuzzy neural nets, Proceedings of 1994 IEEE International Conference on Fuzzy Systems, (1994) 1969-1974.

[24] M. Ma, M. Friedman and A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy sets and systems 105 (1999) 133-138.

[25] A. J. Meade Jr, A. A. Fernandez, Solution of nonlinear ordinary differential equations by feedforward neural networks, Mathematical and Computer Modelling 20 (9) (1994) 19-44.

[26] M. Mosleh, M. Otadi, Simulation and evaluation of fuzzy differential equations by fuzzy neural network, Applied Soft Computing 12 (2012) 2817-2827.

[27] M. Mosleh, M. Otadi, Minimal solution of fuzzy linear system of differential equations, Neural Computing and Applications, 21 (2012) 329-336.

[28] S. Pederson, M. Sambandham, Numerical solution to hybrid fuzzy systems, Mathematical and Computer Modelling 45 (2007) 1133-1144.

[29] S. Pederson, M. Sambandham, Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem, Inf. Sci. 179 (2009) 319-328.

[30] P. Picton, Neural Networks, second ed., Palgrave, Great Britain, 2000.

[31] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983) 552-558.

[32] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319-330.

[33] Wu. Congxin, Ma. Ming, On embedding problem of fuzzy number space, Part 1, Fuzzy Sets and Systems 44 (1991) 33-38.

[34] L. A. Zadeh, The concept of a liguistic variable and its application to approximate reasoning: Parts 1-3, Inform. Sci., 8 (1975) 199-249.