• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Linear and Topological Algebra (JLTA)
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 08 (2019)
Volume Volume 07 (2018)
Volume Volume 06 (2017)
Issue Issue 04
Issue Issue 03
Issue Issue 02
Issue Issue 01
Volume Volume 05 (2016)
Volume Volume 04 (2015)
Volume Volume 03 (2014)
Volume Volume 02 (2013)
Volume Volume 01 (2012)
Eshaghi Gordji, M., Habibi, H. (2017). Fixed point theory in generalized orthogonal metric space. Journal of Linear and Topological Algebra (JLTA), 06(03), 251-260.
M. Eshaghi Gordji; H. Habibi. "Fixed point theory in generalized orthogonal metric space". Journal of Linear and Topological Algebra (JLTA), 06, 03, 2017, 251-260.
Eshaghi Gordji, M., Habibi, H. (2017). 'Fixed point theory in generalized orthogonal metric space', Journal of Linear and Topological Algebra (JLTA), 06(03), pp. 251-260.
Eshaghi Gordji, M., Habibi, H. Fixed point theory in generalized orthogonal metric space. Journal of Linear and Topological Algebra (JLTA), 2017; 06(03): 251-260.

Fixed point theory in generalized orthogonal metric space

Article 7, Volume 06, Issue 03, Summer 2017, Page 251-260  XML PDF (127.92 K)
Document Type: Research Paper
Authors
M. Eshaghi Gordji; H. Habibi email
Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
Abstract
In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.
Keywords
fixed point; Orthogonal set; Solution; Generalized metric space; Cauchy problem
Main Subjects
Fixed point theory
References
[1] H. Baghani, M. Ramezani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl, Article in press.

[2] H. Baghani, M. Eshaghi Gordji, M. Ramezani, Orthogonal sets: their relation to the axiom of choice and a generalized fixed point theorem, J. Fixed Point Theory Appl. 18 (3) (2016), 465-477.

[3] S. Czerwik, K. Krol, Fixed point theorems in generalized metric spaces, Asian-European J. Math. 10 (2) (2017), 1750030.

[4] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory. 18 (2) (2017), 569-578.

[5] A. A. Ivanov, Fixed point theory, J. Sov. Math. 12 (1979), 1-64.

[6] E. Karapinar, Discussion on contractions on generalized metric spaces, Abstract. Appl. Anal. (2014), Article ID 962784, 7 pages.

[7] V. La Rosa, P. Vetro, Common fixed points for α-ψ-ϕ-contractions in generalized metric spaces, Nonlinear Anal. Model. Control. 19 (1) (2014), 43-54.

[8] W. A. J. Luxemburg, On the convegence of successive approximations in the theory of ordinary differential equations. III, Nieun. Arc. Wisk. 6 (1958), 93-98.

[9] M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl. 6 (2) (2015), 127-132.

Statistics
Article View: 478
PDF Download: 520
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.