• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Linear and Topological Algebra (JLTA)
Articles in Press
Current Issue
Journal Archive
Volume Volume 07 (2018)
Issue Issue 01
Volume Volume 06 (2017)
Volume Volume 05 (2016)
Volume Volume 04 (2015)
Volume Volume 03 (2014)
Volume Volume 02 (2013)
Volume Volume 01 (2012)
Pappas, D., Katsikis, V., Stanimirovic, I. (2018). Symbolic computation of the Duggal transform. Journal of Linear and Topological Algebra (JLTA), 07(01), 53-62.
D. Pappas; V. Katsikis; I. Stanimirovic. "Symbolic computation of the Duggal transform". Journal of Linear and Topological Algebra (JLTA), 07, 01, 2018, 53-62.
Pappas, D., Katsikis, V., Stanimirovic, I. (2018). 'Symbolic computation of the Duggal transform', Journal of Linear and Topological Algebra (JLTA), 07(01), pp. 53-62.
Pappas, D., Katsikis, V., Stanimirovic, I. Symbolic computation of the Duggal transform. Journal of Linear and Topological Algebra (JLTA), 2018; 07(01): 53-62.

Symbolic computation of the Duggal transform

Article 5, Volume 07, Issue 01, Winter 2018, Page 53-62  XML PDF (133 K)
Document Type: Research Paper
Authors
D. Pappas orcid 1; V. Katsikis2; I. Stanimirovic3
1Department of Statistics, Athens University of Economics and Business, 76 Patission Str, 10434, Athens, Greece
2Department of Economics, Division of Mathematics and Informatics, National and Kapodistrian University of Athens, Athens, Greece
3Department of Computer Science, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
Abstract
Following the results of \cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical characteristics. The introduced algorithm is proven and illustrated in numerical examples. We also represent symbolically the Duggal transform of rank-one matrices using cross products of vectors and show that the Duggal transform of such matrices can be given explicitly by a closed formula and is equal to its Aluthge transform.
Keywords
Duggal transform; symbolic computation; polar decomposition; polynomial matrices; rank 1 matrices
Main Subjects
Linear and multilinear algebra; matrix theory
References
[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integ. Equ. Oper. Theory. 13 (1990), 307-315.

[2] C. Foias, B. Jung, E. Ko, C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforms. Paci c J. Math. 209 (2) (2003), 249-259.

[3] J. Foster, J. Chambers, J. McWhirter, A novel algorithm for calculating the QR decomposition of a polynomial matrix, IEEE Acoustics, Speech and Signal Processing, ICICS, 2009.

[4] J. Foster, J. McWhirter, M. Davies, An algorithm for calculating the QR and singular value decompositions of polynomial matrices, IEEE Transactions on Signal Processing. 58 (3) (2009), 1263-1274.

[5] J. Foster, Algorithms and techniques for polynomial matrix decompositions, Ph.D. dissertation, School Eng, Cardiff Univ, U.K., 2008.

[6] D. Pappas, V. N. Katsikis, I. P. Stanimirovic, Symbolic computation of the Aluthge transform. Mediterr. J. Math. (2017), doi:10.1007/s00009-017-0862-5.

[7] J. Ringrose, Compact non self adjoint operators, Van Nostrand London, 1971.

[8] R. Wirski, K. Wawryn, Decomposition of rational matrix functions, Information. Communications and Signal Processing, ICICS, 2009.

[9] J. G. McWhirter, An algorithm for polynomial matrix SVD based on generalized Kogbetliantz transformations, Proceedings of EUSIPCO, 2010.

Statistics
Article View: 98
PDF Download: 113
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.