Preclosure operator and its applications in general topology

A. A. Nasefa, S. Jafarib, M. Caldasc, R. M. Latifd, A. A. Azzame,*

aDepartment of Physics and Engineering Mathematics, Faculty of Engineering, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt.

bCollege of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark.

cDepartamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga s/n24020-140, Niterói, RJ Brasil.

dDepartment of Mathematics and statistics, King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia.

eDepartment of Mathematics, Faculty of Science, Assuit University, New Valley, Egypt.

Received 18 July 2016; Accepted 26 January 2018.

Communicated by Hamidreza Rahimi

Abstract. In this paper, we show that a pointwise symmetric pre-isotonic preclosure function is uniquely determined the pairs of sets it separates. We then show that when the preclosure function of the domain is pre-isotonic and the preclosure function of the codomain is pre-isotonic and pointwise-pre-symmetric, functions which separate only those pairs of sets which are already separated are precontinuous.

© 2018 IAUCTB. All rights reserved.

Keywords: Preclosure-separated, preclosure functions, precontinuous functions.

2010 AMS Subject Classification: 45C10, 54D10.

1. Introduction

Generalized open sets play a very important role in general topology and they are now the research topics of many topologist worldwide. Indeed a significant there in general topology and real analysis concerns the variously modified forms of continuity, separation axioms, compactness etc by utilizing generalized open sets. One of the most well-known
notations and also an inspiration source is the notion of preopen sets introduced by Moshour et al. [7]. Throughout the present paper (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by \(\text{Int}(A) \) and \(\text{Cl}(A) \), respectively. \(A \subset X \) is called a preopen [6,7] or nearly open [8] or locally dense [2] set of X if \(A \subset \text{Int}(\text{Cl}(A)) \). The complement of a preopen set is called preclosed. The intersection of all preclosed sets containing a set \(A \) is called the preclosure [3] of \(A \) and is denoted by \(p\text{Cl}(A) \). Notions and notations not described in this paper are standard and usual. This paper is closely related to [1].

Definition 1.1 (1) A generalized preclosure space is a pair \((X, p\text{Cl})\) consisting of a set \(X \) and a preclosure function \(p\text{Cl} \), a function from the power set of \(X \) to itself.

(2) The preclosure of a subset \(A \) of \(X \), denoted \(p\text{Cl} \), is the image of \(A \) under \(p\text{Cl} \).

(3) The pre-exterior of \(A \) is \(p\text{Ext}(A) = X \setminus p\text{Cl}(A) \), and the pre-interior of \(A \) is \(p\text{Int}(A) = X \setminus \text{Cl}(X \setminus A) \).

(4) \(A \) is preclosed if \(A = p\text{Cl}(A) \), \(A \) is preopen if \(A = p\text{Int}(A) \) and \(N \) is a preneighborhood of a point \(x \in X \) [4], [5] if \(x \in p\text{Int}(N) \).

Definition 1.2 A preclosure function \(p\text{Cl} \) defined on \(X \) is:

(1) pre-grounded if \(p\text{Cl}(\emptyset) = \emptyset \).

(2) pre-isotonic if \(p\text{Cl}(A) \subseteq p\text{Cl}(B) \) whenever \(A \subseteq B \).

(3) pre-enlarging if \(A \subseteq p\text{Cl}(A) \) for each subset \(A \) of \(X \).

(4) pre-idempotent if \(p\text{Cl}(A) = p\text{Cl} \), \(p\text{Cl}(p\text{Cl}(A)) \) for each subset \(A \) of \(X \).

(5) pre-sub-linear if \(p\text{Cl}(A \cup B) \subseteq p\text{Cl}(A) \cup p\text{Cl}(B) \) for all \(A, B \subseteq X \).

Definition 1.3 (1) Subsets \(A \) and \(B \) of \(X \) are said to be pre-closure-separated in a generalized preclosure space \((X, p\text{Cl})\) (or simply \(p\text{Cl} \)-separated) if \(A \cap p\text{Cl}(B) = \emptyset \) and \(B \cap p\text{Cl}(A) = \emptyset \) or equivalently, if \(A \subseteq p\text{Ext}(B) \) and \(B \subseteq p\text{Ext}(A) \).

(2) Pre-Exterior points are said to be preclosure-separated in a generalized preclosure \((X, p\text{Cl})\) if for each \(A \subseteq X \) and for each \(x \in p\text{Ext}(A) \), \(\{x\} \) and \(A \) are \(p\text{Cl} \)-separated.

Theorem 1.4 Let \((X, p\text{Cl})\) be a generalized preclosure space in which pre-Exterior points are \(p\text{Cl} \)-separated and let \(S \) be the pairs of \(p\text{Cl} \)-separated sets in \(X \). Then, for each subset \(A \) of \(X \), the preclosure of \(A \) is \(p\text{Cl}(A) = \{x \in X : \{x\}, A \notin S \} \).

Proof. In any generalized preclosure space \(p\text{Cl}(A) \subseteq \{x \in X : \{x\}, A \notin S \} \). Suppose that \(y \notin \{x \in X : \{x\}, A \notin S \} \); that is, \(\{y\}, A \in S \). Then \(\{y\} \cap p\text{Cl}(A) = \emptyset \), and so \(y \notin p\text{Cl}(A) \). Now, let \(y \notin p\text{Cl}(A) \). By hypothesis, \(\{y\}, A \in S \). Therefore, \(y \notin \{x \in X : \{x\}, A \notin S \} \).

\[\square \]

2. Some basic properties

Definition 2.1 A preclosure function \(p\text{Cl} \) defined on a set \(X \) is said to be pointwise pre-symmetric when, for all \(x, y \in X \), if \(x \in p\text{Cl}(\{y\}) \), then \(y \in p\text{Cl}(\{x\}) \).

A generalized preclosure space \((X, p\text{Cl})\) is said to be pre-\(R_0 \) when, for all \(x, y \in X \), if \(x \) is in each preneighborhood of \(y \), then \(y \) is in each preneighborhood of \(x \).

Corollary 2.2 Let \((X, p\text{Cl})\) be a generalized preclosure space in which \(p\text{Ex} \)-Exterior points are \(p\text{Cl} \)-separated. Then \(p\text{Cl} \) is pointwise pre-symmetric and \((X, p\text{Cl})\) is pre-\(R_0 \).

Proof. Let pre-Exterior points be \(p\text{Cl} \)-separated in \((X, p\text{Cl})\). If \(x \in p\text{Cl}(\{y\}) \), then \(\{x\} \) and \(\{y\} \) are not \(p\text{Cl} \)-separated. This means that \(y \in p\text{Cl}(\{x\}) \). Hence, \(p\text{Cl} \) is pointwise pre-symmetric. Suppose that \(x \) belongs to every preneighborhood of \(y \); that is, \(x \in M \).
whenever \(y \in pInt(M) \). Letting \(A = X \setminus M \) and rewriting contrapositively, \(y \in pCl(A) \) whenever \(x \in A \). Let \(x \in pInt(N) \) consequently \(x \notin pCl(X \setminus N) \), so \(x \) is \(pCl \)-separated from \(X \setminus N \). Hence \(pCl(\{x\}) \subseteq N, x \in \{x\}, \) so \(y \in pCl(\{x\}) \subseteq N \). Hence, \((X, pCl)\) is pre-\(R_0 \).

Observe that these three axioms are not equivalent in general, but they are equivalent when the preclosure function is pre-isotonic.

Theorem 2.3 Let \((X, pCl)\) be a generalized preclosure space with \(pCl \) pre-isotonic. Then the following are equivalent:

1. \(pExterior \) points are \(pCl \)-separated.
2. \(pCl \) is pointwise pre-symmetric.
3. \((X, pCl)\) is pre-\(R_0 \).

Proof. Suppose that (2) is true. Let \(A \subseteq X \), and let \(x \in pExt(A) \). Then, as \(pCl \) is pre-isotonic, for each \(y \in A, x \notin pCl(\{y\}) \), and thus, \(y \notin pCl(\{x\}) \). Hence \(A \cap pCl(\{x\}) = \phi \). Therefore (2) implies (1). Moreover, by the previous corollary, (1) implies (2).

Suppose now that (2) is true and let \(x, y \in X \) such that \(x \) is in every preneighbohood of \(y \), i.e. \(x \in N \) whenever \(y \in pInt(N) \). Then \(y \in pCl(A) \) whenever \(x \in A \), and in particular, since \(x \in \{x\}, y \in pCl(\{x\}) \). It follows that \(x \in pCl(\{y\}) \). Thus if \(y \in B \), then \(x \in pCl(\{y\}) \subseteq pCl(B) \), as \(pCl \) is pre-isotonic. Therefore, if \(x \in pInt(C) \), then \(y \in C \), that is, \(y \) is in every preneighbohood of \(x \). Hence, (2) implies (3).

Now, let \((X, pCl)\) be pre-\(R_0 \) and \(x \in pCl(\{y\}) \). Since \(pCl \) is pre-isotonic, \(x \in pCl(B) \) whenever \(y \in B \), or equivalently, \(y \) is in every preneighbohood of \(x \). Since \((X, pCl)\) is pre-\(R_0 \), \(x \in N \) whenever \(y \in pInt(N) \). Therefore, \(y \in pCl(\{A\}) \) whenever \(x \in A \), and in particular, since \(x \in \{x\}, y \in pCl(\{x\}) \). It follows that (3) implies (2).

Theorem 2.4 Let \(S \) be a set of unordered pairs of subsets of a set \(X \) such that, for all \(A, B, C \subseteq X \),

1. if \(A \subseteq B \) and \(\{B, C\} \in S \), then \(\{A, C\} \in S \) and
2. if \(\{x\}, B \in S \) for each \(x \in A \) and \(\{y\}, A \in S \) for each \(y \in B \), then \(\{A, B\} \in S \).

Then there exists a unique pointwise pre-symmetric pre-isotonic preclosure function \(pCl \) on \(X \) which pre-closure-separates the elements of \(S \).

Proof. Define \(pCl \) by \(pCl(A) = \{x \in X : \{x\}, A \notin S \} \) for every \(A \subseteq X \). If \(A \subseteq \emptyset \subseteq X \) and \(x \in pCl(A) \), then \(\{x\}, A \notin S \). Thus \(\{x\}, B \notin S \), that is, \(x \in \emptyset \). Hence \(pCl \) is pre-isotonic. Moreover \(x \in pCl(\{y\}) \) if and only if \(\{x\}, \{y\} \notin S \) if and only if \(y \in pCl(\{x\}) \). Thus \(pCl \) is pointwise pre-symmetric. Suppose that \(\{A, B\} \in S \). Then \(A \cap pCl(B) = A \cap \{x \in X : \{x\}, B \notin S \} = \{x \in A : \{x\}, A \notin S \} = \phi \). Similarly, \(pCl(A) \cap B = \phi \). Therefore, if \(\{A, B\} \in S \), then \(A \) and \(B \) are \(pCl \)-separated.

Now suppose that \(A \) and \(B \) are \(pCl \)-separated. Then \(\{x \in A : \{x\}, B \notin S \} = A \cap pCl(B) = \emptyset \) and \(\{x \in B : \{x\}, A \notin S \} = pCl(A) \cap B = \emptyset \). Hence, \(\{x\}, B \in S \) for each \(x \in A \) and \(\{y\}, A \in S \) for each \(y \in B \). Therefore, \(\{A, B\} \in S \).

In the following we show that many properties of preclosure functions can be expressed in terms of the sets they separate.

Theorem 2.5 Let \(S \) be the pairs of \(pCl \)-separated sets of a generalized preclosure space \((X, pCl)\) in which pre-exterior points are preclosure-separates. Then \(pCl \) is

1. pre-grounded if and only if for all \(x \in X, \{x\}, \phi \in S \).
2. pre-enlarging if and only if for all \(\{A, B\} \in S, A \) and \(B \) are disjoint.
3. pre-sub-linear if and only if \(\{A, B \cup C\} \in S \) whenever \(\{A, B\} \in S \) and \(\{A, C\} \in S \).

Furthermore, if \(pCl \) is pre-enlarging and for all \(A, B \subseteq X, \{x\}, A \notin S \) whenever
\[\{\{x\}, B\} \notin S \text{ and } \{\{y\}, A\} \notin S \text{ for each } y \in B, \text{ then } pCl \text{ is pre-idempotent. Now, if} \\
pCl \text{ is pre-isotonic and pre-idempotent, then } \{\{x\}, A\} \notin S \text{ whenever } \{\{x\}, B\} \notin S \text{ and} \\
\{\{y\}, A\} \notin S \text{ for each } y \in B. \]

Proof. (1) By Theorem 1.4, \(pCl(A) = \{x \in X : \{\{x\}, A\} \notin S\} \) for every \(A \subseteq X \). Suppose that for all \(x \in X, \{\{x\}, \phi\} \in S \). Then \(pCl(\phi) = \{x \in X : \{\{x\}, \phi\} \notin S\} = \phi \).

Hence \(pCl \) is pre-grounded. Conversely, if \(\phi = pCl(\phi) = \{x \in X : \{\{x\}, \phi\} \notin S\} \), then \(\{\{x\}, \phi\} \in S \), for all \(x \in X \).

(2) Assume that for all \(\{A, B\} \subseteq S \), \(A \) and \(B \) are disjoint. Since \(\{\{a\}, A\} \notin S \) if \(a \in A, A \subseteq pCl(A) \) for each \(A \subseteq X \). Therefore, \(pCl \) is pre-enlarging. Conversely, let \(pCl \) be pre-enlarging and \(\{A, B\} \subseteq S \). Then \(A \cap B \subseteq pCl(A) \cap B = \phi \).

(3) Suppose that \(\{A, B \cup C\} \subseteq S \) whenever \(\{A, B\} \subseteq S \) and \(\{A, C\} \subseteq S \). Let \(x \in X \) and \(B, C \subseteq X \) such that \(\{\{x\}, B \cup C\} \notin S \). Then \(\{\{x\}, B\} \notin S \) or \(\{\{x\}, C\} \notin S \).

Hence \(pCl(B \cup C) \subseteq pCl(B) \cup pCl(C) \). Therefore, \(pCl \) is pre-sub-linear. Conversely, suppose that \(pCl \) is pre-sub-linear and let \(\{A, B\}, \{A, C\} \subseteq S \). Then \(pCl(B \cup C) \cap A \subseteq (pCl(B) \cup pCl(C)) \cap A \subseteq (pCl(B) \cap A) \cup (pCl(C) \cap A) = \phi \) and \((B \cup C) \cap pCl(A) = (B \cap pCl(A)) \cup (C \cap pCl(A)) = \phi \).

Let \(pCl \) be pre-enlarging and suppose that \(\{\{x\}, A\} \notin S \) whenever \(\{\{x\}, B\} \notin S \) and \(\{\{y\}, A\} \notin S \) for each \(y \in B \). Then \(pCl(pCl(A)) \subseteq pCl(A) \).

If \(x \in pCl(pCl(A)) \), then \(\{\{x\}, pCl(A)\} \notin S \). \(\{\{y\}, A\} \notin S \), for each \(y \in pCl(A) \); hence \(\{\{x\}, A\} \notin S \). Since \(pCl \) is pre-enlarging, then \(pCl(A) \subseteq pCl(pCl(A)) \).

Therefore, \(pCl(pCl(A)) = pCl(A) \) for each \(A \subseteq X \). Suppose that \(pCl \) is pre-isotonic and pre-idempotent. Let \(x \in X \) and \(A, B \subseteq X \) such that \(\{\{x\}, B\} \notin S \) and for each \(y \in B \), \(\{\{y\}, A\} \notin S \). Then \(x \in pCl(B) \) and for each \(y \in B \), \(y \in pCl(A) \), i.e. \(B \subseteq pCl(A) \). Therefore, \(x \in pCl(B) \subseteq pCl(pCl(A)) = pCl(A) \).

Definition 2.6 If \((X, (pCl)_X) \) and \((Y, (pCl)_Y) \) are generalized preclosure spaces, then a function \(f : X \to Y \) is said to be

1. preclosure preserving if \(f((pCl)_X(A)) \subseteq (pCl)_Y(f(A)) \) for each \(A \subseteq X \).
2. precontinuous if \((pCl)_X(f^{-1}(B)) \subseteq f^{-1}((pCl)_Y(B)) \) for each \(B \subseteq Y \).

Observe that in general, neither condition implies the other. Now, we have the following result:

Theorem 2.7 Let \((X, (pCl)_X) \) and \((Y, (pCl)_Y) \) be generalized preclosure spaces and let \(f : X \to Y \) be a function.

1. If \(f \) is preclosure preserving and \((pCl)_Y \) is pre-isotonic, then \(f \) is precontinuous.
2. If \(f \) is precontinuous and \((pCl)_X \) is pre-isotonic, then \(f \) is preclosure preserving.

Proof. Let \(f \) be preclosure preserving and \((pCl)_Y \) is pre-isotonic. Let \(B \subseteq Y \). \(f((((pCl)_X(f^{-1}(B))) \subseteq (pCl)_Y(f(f^{-1}(B))) \subseteq (pCl)_Y(B) \) and hence, \((pCl)_X(f^{-1}(B)) \subseteq f^{-1}(f((pCl)_X(f^{-1}(B)))) \subseteq f^{-1}((pCl)_Y(B)) \).

Suppose that \(f \) is precontinuous and \((pCl)_X \) is pre-isotonic. Let \(A \subseteq X \). \((pCl)_X(A) \subseteq (pCl)_X(f^{-1}(f(A))) \subseteq f^{-1}((pCl)_Y(f(f(A)))) \). Therefore, \(f((pCl)_X(A)) \subseteq f(f^{-1}((pCl)_Y(f(A)))) \subseteq (pCl)_Y(f(A)) \).

Definition 2.8 Let \((X, (pCl)_X) \) and \((Y, (pCl)_Y) \) be generalized preclosure spaces and let \(f : X \to Y \) be a function. If for all \(A, B \subseteq X, f(A) \) and \(f(B) \) are not \((pCl)_Y \)-separated whenever \(A \) and \(B \) are not \((pCl)_X \)-separated, then we say that \(f \) is non-pre-separating. Observe that \(f \) is non-pre-separating if and only if \(A \) and \(B \) are not \((pCl)_X \)-separated whenever \(f(A) \) and \(f(B) \) are \((pCl)_Y \)-separated.

Theorem 2.9 Let \((X, (pCl)_X) \) and \((Y, (pCl)_Y) \) be generalized preclosure spaces and let \(f : X \to Y \) be a function.
(1) If \((pCl)_Y\) is pre-isotonic and \(f\) is non-pre-separating, then \(f^{-1}(C)\) and \(f^{-1}(D)\) are \((pCl)_Y\)-separated whenever \(C\) and \(D\) are \((pCl)_Y\)-separated.

(2) If \((pCl)_X\) is pre-isotonic and \(f^{-1}(C)\) and \(f^{-1}(D)\) are \((pCl)_X\)-separated whenever \(C\) and \(D\) are \((pCl)_Y\)-separated, then \(f\) is non-pre-separating.

Proof. Suppose that \(C\) and \(D\) are \((pCl)_Y\)-separated subsets, where \((pCl)_Y\) is pre-isotonic. Let \(A = f^{-1}(C)\) and \(B = f^{-1}(D)\). If \(f\) is pre-isotonic, \(f(A)\) and \(f(B)\) are also \((pCl)_Y\)-separated. It follows now that \(A\) and \(B\) are \((pCl)_X\)-separated in \(X\). Suppose that \((pCl)_X\) is pre-isotonic and let \(A, B \subseteq X\) such that \(C = f(A)\) and \(D = f(B)\) are \((pCl)_X\)-separated. Then \(f^{-1}(C)\) and \(f^{-1}(D)\) are \((pCl)_X\)-separated and since \((pCl)_X\) is pre-isotonic, \(A \subseteq f^{-1}(f(A)) = f^{-1}(C)\) and \(B \subseteq f^{-1}(f(B)) = f^{-1}(D)\) are \((pCl)_X\)-separated as well.

Theorem 2.10 Let \((X, (pCl)_X)\) and \((Y, (pCl)_Y)\) be generalized preclosure spaces and let \(f : X \rightarrow Y\) be a function. If \(f\) is preclosure preserving, then \(f\) is non-pre-separating.

Proof. Suppose that \(f\) is preclosure preserving and \(A, B \subseteq X\) are not \((pCl)_X\)-separated. Suppose that \((pCl)_X(A) \cap B \neq \emptyset\). Then \(\phi \neq f((pCl)_X(A) \cap B) \subseteq f((pCl)_X(A)) \cap f(B) \subseteq (pCl)_Y(f(A)) \cap f(B)\). Similarly, if \(A \cap (pCl)_X(B) \neq \emptyset\), then \(f(A) \cap (pCl)_Y(f(B)) \neq \emptyset\). Hence \(f(A)\) and \(f(B)\) are not \((pCl)_Y\)-separated.

Corollary 2.11 Let \((X, (pCl)_X)\) and \((Y, (pCl)_Y)\) be generalized preclosure spaces with \((pCl)_Y\) pre-isotonic and let \(f : X \rightarrow Y\) be a function. If \(f\) is precontinuous, then \(f\) is non-pre-separating.

Proof. If \(f\) is precontinuous and \((pCl)_X\) pre-isotonic, then by Theorem 2.9 (2) \(f\) is preclosure-preserving. Now, by Theorem 2.10, \(f\) is non-pre-separating.

Theorem 2.12 Let \((X, (pCl)_X)\) and \((Y, (pCl)_Y)\) be generalized preclosure spaces which pre-Exterior points \((pCl)_Y\)-separated in \(Y\) and let \(f : X \rightarrow Y\) be a function. Then \(f\) is preclosure-preserving if and only if \(Y\) is non-pre-separating.

Proof. By Theorem 2.10, if \(f\) is preclosure-preserving, then \(f\) is non-pre-separating. Suppose that \(f\) is non-pre-separating and let \(A \subseteq X\). If \((pCl)_X = \emptyset\), then \(f((pCl)_X(A)) = \emptyset \subseteq (pCl)_Y(f(A))\). Suppose \((pCl)_X(A) \neq \emptyset\). Let \(S_X\) and \(S_Y\) denote the pairs of \((pCl)_X\)-separated subsets of \(X\) and the pairs of \((pCl)_Y\)-separated subsets of \(Y\), respectively. Let \(y \in f((pCl)_X(A))\) and let \(x \in (pCl)_X(A) \cap f^{-1}(\{y\})\). Since \(x \in (pCl)_X(A)\), \(\{x\} \notin S_X\) and since \(f\) non-pre-separating, \(\{y\}, f(A)\) \(\notin S_Y\). Since pre-Exterior points are \((pCl)_Y\)-separated, \(y \in (pCl)_Y(f(A))\). Thus \(f((pCl)_X(A)) \subseteq (pCl)_Y(f(A))\) for each \(A \subseteq X\).

Corollary 2.13 Let \((X, (pCl)_X)\) and \((Y, (pCl)_Y)\) be generalized preclosure spaces which pre-isotonic closure functions and with \((pCl)_Y\)-pointwise-pre-symmetric and let \(f : X \rightarrow Y\) be a function. Then \(f\) is precontinuous if and only if \(f\) is non-pre-separating.

Proof. Since \((pCl)_Y\) is pre-isotonic and pointwise-pre-symmetric, pre-Exterior points are preclosure separated in \((Y, (pCl)_Y)\) (Theorem 2.3 (1)). Since both pre-closure functions are pre-isotonic, \(f\) is preclosure-preserving if and only if \(f\) is precontinuous. Hence, we can apply the Theorem 2.12.

3. Preconnected generalized preclosure spaces

Definition 3.1 Let \((X, pCl)\) be generalized preclosure space. \(X\) is said to be preconnected if \(X\) is not a union of disjoint nontrivial preclosure-separated pair of sets.
Theorem 3.2 Let \((X, p\text{Cl})\) be generalized preclosure space with pre-grounded pre-isotonic pre-enlarging \(p\text{Cl}\). Then, the following are equivalent:
(1) \((X, p\text{Cl})\) is preconnected,
(2) \(X\) can not be a union of nonempty disjoint preopen sets.

Proof. (1) \(\Rightarrow\) (2): Let \(X\) be a union of nonempty disjoint preopen sets \(A\) and \(B\). Then, \(X = A \cup B\) and this implies that \(B = X \setminus A\) and \(A\) is a preopen set. Thus, \(B\) is preclosed and hence \(A \cap p\text{Cl}(B) = A \cap B = \emptyset\). By using similar way, we obtain \(B \cap p\text{Cl}(A) = \emptyset\). Hence, \(A\) and \(B\) are preclosure-separated and hence \(X\) is not preconnected. This is a contradiction.

(2) \(\Rightarrow\) (1): Suppose that \(X\) is not preconnected. Then \(X = A \cup B\), where \(A, B\) are disjoint preclosure-separated sets, i.e., \(A \cup p\text{Cl}(B) = p\text{Cl}(A) \cap B = \emptyset\). We have \(p\text{Cl}(B) \subseteq X \setminus A \subseteq B\). Since \(p\text{Cl}\) is pre-enlarging, we obtain \(p\text{Cl}(B) = B\) and hence, \(B\) is preclosed. By using \(p\text{Cl}(A) \cap B = \emptyset\) and similar way, it is obvious that \(A\) is preclosed. But this is a contradiction. \(\blacksquare\)

Definition 3.3 Let \((X, p\text{Cl})\) be a generalized preclosure space with pre-grounded pre-isotonic \(p\text{Cl}\). Then, \((X, p\text{Cl})\) is called a \(T_1\)-pre-grounded pre-isotonic \(p\text{Cl}\).

Theorem 3.4 Let \((X, p\text{Cl})\) be a generalized preclosure space with \(\lambda\)-grounded pre-isotonic \(p\text{Cl}\). Then, the following are equivalent:
(1) \((X, p\text{Cl})\) is preconnected,
(2) Any precontinuous function \(f : X \to Y\) is constant for all \(T_1\)-pre-grounded pre-isotonic spaces \(Y = \{0, 1\}\).

Proof. (1) \(\Rightarrow\) (2): Let \(X\) be preconnected. Suppose that \(f : X \to Y\) is pre-continuous and it is not constant. Then there exists a set \(U \subseteq X\) such that \(U = f^{-1}(\{0\})\) and \(X \setminus U = f^{-1}(\{1\})\). Since \(f\) is precontinuous and \(Y\) is \(T_1\)-\(\lambda\)-grounded pre-isotonic space, then we have \(p\text{Cl}(U) = p\text{Cl}(f^{-1}(\{0\})) \subset f^{-1}(p\text{Cl}(\{0\})) \subset f^{-1}(\{0\}) = U\) and hence \(p\text{Cl}(U) \cap (X \setminus U) = \emptyset\). By using similar way we have \(U \cap p\text{Cl}(X \setminus U) = \emptyset\). This is a contradiction. Thus, \(f\) is constant.

(2) \(\Rightarrow\) (1): Suppose that \(X\) is not preconnected. Then there exist preclosure-separated sets \(U\) and \(V\) such that \(U \cup V = X\). We have \(p\text{Cl}(U) \subseteq U\) and \(p\text{Cl}(V) \subseteq V\) and \(X \setminus U \subseteq V\). Since \(p\text{Cl}\) is pre-isotonic and \(U\) and \(V\) are preclosure-separated, then \(p\text{Cl}(X \setminus U) \subset p\text{Cl}(V) \subset X \setminus U\). If we consider the space \((Y, p\text{Cl})\) by \(Y = \{0, 1\}\), \(p\text{Cl}(\emptyset) = \emptyset\), \(p\text{Cl}(\{0\}) = \{0\}\), \(p\text{Cl}(\{1\}) = \{1\}\) and \(p\text{Cl}(Y) = Y\), then the space \((Y, p\text{Cl})\) is a \(T_1\)-pre-grounded pre-isotonic space. We define the function \(f : X \to Y\) as \(f(U) = \{0\}\) and \(f(X \setminus U) = \{1\}\). Let \(A \neq \emptyset\) and \(A \subseteq Y\). If \(A = Y\), then \(f^{-1}(A) = X\) and hence \(p\text{Cl}(X) = p\text{Cl}(f^{-1}(A)) \subset X = f^{-1}(A) = f^{-1}(p\text{Cl}(A))\). If \(A = \emptyset\), then \(f^{-1}(A) = U\) and hence \(p\text{Cl}(U) = p\text{Cl}(f^{-1}(A)) \subset U = f^{-1}(A) = f^{-1}(p\text{Cl}(A))\). If \(A = \{1\}\), then \(f^{-1}(A) = X \setminus U\) and so \(p\text{Cl}(X \setminus U) = p\text{Cl}(f^{-1}(A)) \subset X \setminus U = f^{-1}(A) = f^{-1}(p\text{Cl}(A))\). Hence, \(f\) is precontinuous. Since \(f\) is not constant, this is a contradiction. \(\blacksquare\)

Theorem 3.5 Let \(f : (X, p\text{Cl}) \to (Y, p\text{Cl})\) and \(g : (Y, p\text{Cl}) \to (Z, p\text{Cl})\) be precontinuous functions. Then, \(g \circ f : X \to Z\) is precontinuous.

Proof. Suppose that \(f\) and \(g\) are precontinuous. For all \(A \subseteq Z\) we have \(p\text{Cl}(g \circ f)^{-1}(A) = p\text{Cl}(f^{-1}(g^{-1}(A))) \subset f^{-1}(p\text{Cl}(g^{-1}(A))) \subset f^{-1}(g^{-1}(p\text{Cl}(A))) = (g \circ f)^{-1}(p\text{Cl}(A))\). Hence, \(g \circ f : X \to Z\) is precontinuous. \(\blacksquare\)

Theorem 3.6 Let \((X, p\text{Cl})\) and \((Y, p\text{Cl})\) be generalized preclosure spaces with pre-grounded pre-isotonic \(p\text{Cl}\) and \(f : (X, p\text{Cl}) \to (Y, p\text{Cl})\) be a precontinuous function onto
Y. If X is preconnected, then Y is preconnected.

Proof. Suppose that \(\{0, 1\} \) is a generalized preclosure space with pre-grounded pre-isotonic \(pCl \) and \(g : Y \to \{0, 1\} \) is a precontinuous function. Since \(f \) is precontinuous, by Theorem 3.5, \(g \circ f : X \to \{0, 1\} \) is precontinuous. Since \(X \) is preconnected, \(g \circ f \) is constant and hence \(g \) is constant. By Theorem 3.4, \(Y \) is preconnected.

Definition 3.7 Let \((Y, pCl)\) be a generalized preclosure space with pre-grounded pre-isotonic \(pCl \) and more than one element. A generalized preclosure space \((X, pCl)\) with pre-grounded pre-isotonic \(pCl \) is called \(Y \)-preconnected if any precontinuous function \(f : X \to Y \) is constant.

Theorem 3.8 Let \((Y, pCl)\) be a generalized preclosure space with pre-grounded pre-isotonic \(pCl \) and more than one element. Then every \(Y \)-preconnected generalized preclosure space with pre-grounded pre-isotonic is preconnected.

Proof. Let \((X, pCl)\) be a \(Y \)-preconnected generalized preclosure space with pre-grounded pre-isotonic \(pCl \). Suppose that \(f : X \to \{0, 1\} \) is a precontinuous function, where \(\{0, 1\} \) is a \(T_1 \)-pre-grounded pre-isotonic space. Since \(Y \) is a generalized preclosure space with pre-grounded pre-isotonic pre-enlarging \(pCl \) and more than one element, then there exists a precontinuous injection \(g : \{0, 1\} \to Y \). By Theorem 3.5, \(g \circ f : X \to Y \) is precontinuous. Since \(X \) is \(Y \)-preconnected, then \(g \circ f \) is constant and hence, by Theorem 3.4, \(X \) is preconnected.

Theorem 3.9 Let \((X, pCl)\) and \((Y, pCl)\) be generalized preclosure spaces with pre-grounded pre-isotonic \(pCl \) and \(f : (X, pCl) \to (Y, pCl) \) be a precontinuous function onto \(Y \). If \(X \) is \(Z \)-preconnected, then \(Y \) is \(Z \)-preconnected.

Proof. Suppose that \(g : Y \to Z \) is a precontinuous function. Then \(g \circ f : X \to Z \) is precontinuous. Since \(X \) is \(Z \)-preconnected, then \(g \circ f \) is constant. This implies that \(g \) is constant. Thus, \(Y \) is \(Z \)-preconnected.

Definition 3.10 A generalized preclosure space \((X, pCl)\) is strongly preconnected if there is no countable collection of pairwise preclosure-separated sets \(\{A_n\} \) such that \(X = \bigcup A_n \).

Theorem 3.11 Every strongly preconnected generalized preclosure space with pre-grounded pre-isotonic \(pCl \) is preconnected.

Theorem 3.12 Let \((X, pCl)\) and \((Y, pCl)\) be generalized preclosure spaces with pre-grounded pre-isotonic \(pCl \) and \(f : (X, pCl) \to (Y, pCl) \) be a precontinuous function onto \(Y \). If \(X \) is strongly preconnected, then \(Y \) is strongly preconnected.

Proof. Suppose that \(Y \) is not strongly preconnected. Then, there exists a countable collection of pairwise preclosure-separated sets \(\{A_n\} \) such that \(Y = \bigcup A_n \). Since \(f^{-1}(A_n) \cap pCl(f^{-1}(A_m)) \leq f^{-1}(A_n) \cap f^{-1}(pCl(A_m)) = \phi \) for all \(n \neq m \), then the collection \(\{f^{-1}(A_n)\} \) is pairwise preclosure separated. This is a contradiction. Hence, \(Y \) is strongly preconnected.

Theorem 3.13 Let \((X, (pCl)_X)\) and \((Y, (pCl)_Y)\) be generalized preclosure spaces. Then the following are equivalent for a function \(f : X \to Y \).

1. \(f \) is precontinuous,
2. \(f^{-1}(pInt(B)) \subseteq pInt(f^{-1}(B)) \) for each \(B \subseteq Y \).

Theorem 3.14 Let \((X, pCl)\) be a generalized preclosure space with pre-grounded pre-isotonic \(pCl \). Then \((X, pCl)\) is strongly preconnected if and only if \((X, pCl)\) is \(Y \)-
preconnected for any countable T_1-pre-grounded pre-isotonic space (Y, pCl).

Proof. Let (X, pCl) be strongly preconnected. Suppose that (X, pCl) is not Y-preconnected for some countable T_1-pre-grounded pre-isotonic space (Y, pCl). There exists a precontinuous function $f : X \to Y$ which is not constant and hence $K = f(X)$ is a countable set with more than one element. For each $y_n \in K$, there exists $U_n \subset X$ such that $U_n = f^{-1}(\{y_n\})$ and hence $Y = \cup U_n$. Since f is precontinuous and Y is pre-grounded, then for each $n \neq m$, $U_n \cap pCl(U_m) = f^{-1}(\{y_n\}) \cap f^{-1}(\{y_m\})
subseteq f^{-1}(pCl(\{y_n\})) \cap f^{-1}(pCl(\{y_m\})) \subsetneq f^{-1}(\{y_n\}) \cap f^{-1}(\{y_m\}) = \emptyset$. This contradict with the strong preconnectedness of X. Thus, X is Y-preconnected. Conversely, let X be Y-preconnected for any countable T_1-pre-grounded pre-isotonic space (Y, pCl). Suppose that X is not strongly preconnected. There exists a countable collection of pairwise pre-continuous separated sets $\{U_n\}$ such that $X = \cup U_n$. We take the space (Z, pCl), where Z is the set of integers and $pCl : P(Z) \to P(Z)$ is defined by $pCl(K) = K$ for each $K \subset Z$. Clearly (Z, pCl) is countable T_1-pre-grounded pre-isotonic space. Put $U_k \in \{U_n\}$. We define a function $f : X \to Z$ by $f(U_k) = \{x\}$ and $f(X \setminus U_k) = \{y\}$ where $x, y \in Z$ and $x \neq y$. Since $pCl(U_k) \cap U_n = \emptyset$ for all $n \neq k$, then $pCl(U_k) \cap \cup_{n \neq k}U_k = \emptyset$ and hence $pCl(U_k) \subset U_k$. Let $\emptyset \neq K \subseteq Z$. If $x, y \in K$ and then $f^{-1}(K) = X$ and $pCl(f^{-1}(K)) = pCl(K) \subset X = f^{-1}(K) = f^{-1}(pCl(K))$. If $x \in K$ and $y \notin K$, then $f^{-1}(K) = U_k$ and $pCl(f^{-1}(K)) = pCl(U_k) \subset U_k = f^{-1}(K) = f^{-1}(pCl(K))$. If $y \in K$ and $x \notin K$, then $f^{-1}(K) = X \setminus U_k$. Since $pCl(K) = K$ for each $K \subset Z$, then $pInt(K) = K$ for each $K \subset Z$. Also, $X \setminus U_K \cup \cup_{n \neq k}U_n \subset X \setminus pCl(U_k) = pInt(X \setminus U_k)$. Therefore, $f^{-1}(pInt(K)) = X \setminus U_k = f^{-1}(K) \subset pInt(X \setminus U_k) = pInt(f^{-1}(K))$. Hence we obtain that f is precontinuous. Since f is not constant, this is a contradiction with the Z-preconnectedness of X. Hence, X is strongly preconnected. \hfill \blacksquare

4. Conclusion

Closure spaces in point-set topology will give some new topological properties (for example: separation axioms, compactness, connectedness, continuity) which have been found to be very useful in the study of certain objects of digital topology [9]. Thus we may stress once more the importance of preclosure operators as a branch of them and the possible application in computer graphics [5] and quantum physics [4].

Acknowledgements

The authors would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help to improve the paper.

References