Document Type: Special Issue on Fixed Point Theory

Authors

Department of Mathematics, Maharshi Dayanand University, Rohtak, India

Abstract

In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spaces. We also provide examples to analyze and support our results.

Keywords

Main Subjects

[1] A. H. Ansari, M. A. Barakat, H. Aydi, New approach for common fixed point theorems via C-class  functions in Gp- metric spaces, J. Functions Spaces. (2017), 2017:2624569.

[2] A. H. Ansari, A. Razani, N. Hussain, New best proximity point results in G-metric space, J. Linear. Topo- logical. Algebra. 6 (1) (2017), 73-89.

[3] M. Asadi, E. Karapinar, A. Kumar, α − ψ-Geraghty contraction on generalized metric spaces, J. Inequal. Appl. (2014), 2014:423.

[4] H. Aydi, S. Chauhan, S. Radenovi´c, Fixed points of weakly compatible mappings in G-metric  spaces satisfying common limit range property, Math and Informatics. 28 (2) (2013), 197-210.

[5] H. Aydi, A. Felhi, On best proximity points for various α-proximal contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9 (8) (2016), 5202-5218.

[6] H. Aydi, A. Felhi, E. Karapinar, On common best proximity points for generalized α-ψ-proximal contractions, J. Nonlinear Sci. Appl. 9 (5) (2016), 2658-2670.

[7] H. Aydi, A. Felhi, S. Sahmim, Related fixed point results for cyclic contractions on G-metric spaces and applications, Filomat. 31 (3) (2017), 853-869.

[8] S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fundam. Math. 3 (1922), 133-181.

[9] N. Bilgili, E. Karapinar, P. Salimi, Fixed point theorems for generalized contractions on Gp-metric spaces, J. Inequal. Appl. 39 (2013), 1-13.

[10] B. C. Dhage, A study of some fixed point theorems, Ph.D. Thesis (Marathwada Univ. Aurangabad), India, 1984.

[11] B. C. Dhage, Generalized metric space and mappings with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329-336.

[12] S. Gahler, 2-metriche raume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.

[13] M. Jleli, B. Samet, Best proximity points for α − ψ-proximal contractive type mappings and applications, Bull. des Sci. Mathematiques. 137 (2013), 977-995.

[14] Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir-Keeler type contractions on G-metric spaces, Appl. Math. Comput. 219 (2013), 10441-10447.

[15] Z. Mustafa, H. Aydi, E. Karapinar, On common fixed points in G-metric spaces using (E.A) property, Comput. Math. Appl. 6 (6) (2012), 1944-1956.

[16] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. (2008), 2008:189870.

[17] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex. Anal. 7 (2006), 289-297.

[18] Z. Mustafa, B. Sims, Some remarks concerning D-metric space, Proc. Inter. Conf. Fixed Point Theory Appl. (2004), 189-198.

[19] V. Paravneh, J. R. Roshan, Z. Kadelburg, On generalized weakly Gp contractive mappings in ordered Gp−metric spaces, Gulf J. Math. 7 (2013), 78-97.

[20] V. Pragadeeswarar, M. Marudai, P. Kumam, K. Sitthithakerngkiet, The existence and uniqueness of coupled best proximity point for proximally point for proximally coupled contraction in a complete ordered metric space, Abstr. Appl. Anal. (2014), 2014:274062.

[21] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. (2014), 2014:190.

[22] S. Radenovi´c, Remarks on some recent coupled coincidence point results in symmetric G-metric spaces, Journal of Operator. (2013), 2013:290525.

[23] S. Radenovi´c, S. Panteli´c, P. Salimi, J. Vujakovi´c, A note on some tripled coincidence point results in G-metric space, Inter. J. Math. Sci. Engin. Appl. 6 (6) (2012), 23-38.

[24] S. Rathee, K. Dhingra, Best proximity point for generalized Geraghty-contractions with MT-condition, Int. J. Comput. Appl. 127 (8) (2015), 8-11.

[25] S. Rathee, K. Dhingra, A. Kumar, Existence of common fixed point and best proximity point for generalized nonexpansive type maps in convex metric space, Springerplus. (2016), 5:1940.

[26] S. Sadiq Basha, P. Veeramani, Best proximity point theorems for multifunctions with open fibres, J. Approx.
Theory. 103 (2000), 119-129.

[27] W. Shatanawi, S. Chauhan, M. Postolache, M. Abbas, S. Radenovi´c, Common fixed point for contractive mappings of integral type in G-metric spaces, J. Adv. Math. Stud. 6 (1) (2013), 53-72.

[28] W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. (2012), 2012:93.

[29] N. Tahat, H. Aydi, E. Karapinar, W. Shatanwai, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. (2012), 2012:48.

[30] M. R. A. Zand, A. D. Nezhad, A generalization of partial metric spaces, J. Contemp. Appl. Math. 24 (2011), 86-93.