Sanaei, M., Sahebi, S., Javadi, H. (2019). On a generalization of central Armendariz rings. Journal of Linear and Topological Algebra (JLTA), 08(01), 53-61.
M. Sanaei; Sh. Sahebi; H. H. S. Javadi. "On a generalization of central Armendariz rings". Journal of Linear and Topological Algebra (JLTA), 08, 01, 2019, 53-61.
Sanaei, M., Sahebi, S., Javadi, H. (2019). 'On a generalization of central Armendariz rings', Journal of Linear and Topological Algebra (JLTA), 08(01), pp. 53-61.
Sanaei, M., Sahebi, S., Javadi, H. On a generalization of central Armendariz rings. Journal of Linear and Topological Algebra (JLTA), 2019; 08(01): 53-61.
1Department of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Iran
2Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
Abstract
In this paper, some properties of $\alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $\alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $\alpha(e)=e$ for each idempotent $e^{2}=e \in R$ and $R$ is $\alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $\alpha$-skew Armendariz, then $R$ is right p.p-ring if and only if $R[x;\alpha]$ is right p.p-ring. Then it is proved that if $\alpha^{t}=I_{R}$ for some positive integer $t$, $ R $ is central $ \alpha $-skew Armendariz if and only if the polynomial ring $ R[x] $ is central $ \alpha $-skew Armendariz if and only if the Laurent polynomial ring $R[x,x^{-1}]$ is central $\alpha$-skew Armendariz.