Document Type : Research Paper


1 Department of Mathematics‎, ‎Technical and Vocational‎, ‎University (TVU)‎, ‎Tehran‎, ‎Iran

2 Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran


‎Complex-valued harmonic functions that are univalent and‎ ‎sense-preserving in the open unit disk $U$ can be written as form‎ ‎$f =h+\bar{g}$‎, ‎where $h$ and $g$ are analytic in $U$‎. ‎In this paper‎, ‎we introduce the class $S_H^1(\beta)$‎, ‎where $1<\beta\leq 2$‎, ‎and‎ ‎consisting of harmonic univalent function $f = h+\bar{g}$‎, ‎where $h$ and $g$ are in the form‎ ‎$h(z) = z+\sum\limits_{n=2}^\infty |a_n|z^n‎$ ‎and ‎‎$‎g(z) =‎\sum\limits_{n=2}^\infty |b_n|\bar z^n$‎ for which‎ ‎$$\mathrm{Re}\left\{z^2(h''(z)+g''(z))‎ +2z(h'(z)+g'(z))-(h(z)+g(z))-(z-1)\right\}<\beta.$$‎ It is shown that the members of this class are convex and starlike‎. ‎We obtain distortions bounds extreme point for functions belonging to this class‎, ‎and we also show this class is closed under‎ convolution and convex combinations‎.


Main Subjects

[1] J. Clunie, T. Sheil-Small, Univalent functions, Ann. Acad. Sci. Fenn. Series A. 9 (1984), 3-25.
[2] K. K. Dixit, S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamk. J. Math. 41 (3) (2010), 261-269.
[3] A. R. Haghighi, A. Sadeghi, N. Asghary, A subclass of harmonic univalent functions, Acta Univ. Apul. 38 (2014), 1-10.
[4] S. Y. Karpuzogullari, M. Özturk, M. Y. Karadeniz, A subclass of harmonic univalent functions with negative coefficients, App. Math. Comp. 142 (2003), 469-476.
[5] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-528.
[6] H. Silverman, Univalent functions with negative coefficients, J. Math. Anal. App. 220 (1998), 283-289.