$\gamma_{_\mu}$-Lindel\"{o}f generalized topological spaces

Document Type: Research Paper

Authors

1 Department of Mathematics‎, ‎Women's Christian College‎, ‎6‎, ‎G‎. ‎C‎. ‎Row‎, ‎Kolkata 700 026‎, ‎India

2 2949-1 Shiokita-cho‎, ‎Hinagu,Yatsushiro-shi‎, ‎Kumamoto-Ken‎, ‎869-5142, Japan

Abstract

‎In this paper we have introduced new types of sets termed as $\omega_{_{\gamma_{_\mu}}}$-open sets with the help of an operation and a generalized topology‎. ‎We have also defined a notion of $\gamma_{_\mu}$-Lindel\"{o}f spaces and discussed some of its basic properties‎.
 

Keywords

Main Subjects


[1] G. Balasubramanian, On some generalizations of compact spaces, Glas. Mat. 17 (37) (1982), 367-380.

[2] F. Cammaroto, G. Santoro, Some counter examples and properties on generalizations of Lindelöf spaces, Internat. J. Math. Math. Sci. 19 (1996), 737-746.

[3] A. Csaszar, Generalized open sets in generalized topologies, Acta. Math. Hungar. 106 (2005), 53-66.

[4] A. Csaszar, Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002), 351-357.

[5] N. Ergun, On nearly paracompact spaces, Istanbul Univ. Fen Fak. Mat. Derg. Ser. A. (45) (1980), 65-87.

[6] M. Ganster, On covering properties and generalized open sets in topological spaces, Math. Chronicle. 19 (1990), 27-33.

[7] H. Z. Hdeib, ω-closed mappings, Rev. Colom. Mat. 16 (1982), 65-78.

[8] H. Z. Hdeib, M. S. Sarsak, On strongly Lindelöf spaces, Quest. Ans. Gen. Topol. 18 (2000), 289-298.

[9] D. S. Jankovic, On functions with γ-closed graphs, Glas. Mat. 18 (38) (1983), 141-148.

[10] S. Kasahara, Operation-compact spaces, Math. Japon. 24 (1979), 97-105.

[11] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein, T. Noiri, Strongly compact spaces, Delta. J. Sci. 8 (1984), 30-46.

[12] M. Mrevic, I. L. Reilly, M. K. Vamanamurthy, On nearly Lindelöf spaces, Glas. Mat. 21 (41) (1986), 407-414.

[13] H. Ogata, Operations on topological spaces and associated topology, Math. Japon. 36 (1991), 175-184.

[14] B. Roy, Applications of operations on minimal generalized open sets, Afrika. Mat. 29 (2018), 1097-1104.

[15] B. Roy, T. Noiri, Applications of operations on generalized topological spaces, Communicated.

[16] M. S. Sarsak, On µ-compact sets in µ-spaces, Quest. Ans. Gen. Topol. 31 (1) (2013), 49-57.