[1] R. Ablamowicz, B. Fauser, On the transposition anti involution in real Clifford algebras I: The transposition map, Linear and Multilinear Algebra. 59 (12) (2011), 1331-1358.

[2] R. Alves, D. Hildenbrand, C. Steinmetz, P. Uftring, Efficient development of competitive mathematica solutions based on geometric algebra with gaalopweb, Advances in Applied Clifford Algebras. 30 (4) (2020), 1-18.

[3] E. Artin, Geometric Algebra, Interscience Publ. Inc, London, 1957.

[4] W. L Bade, H. Jehle, An introduction to spinors, Reviews of Modern Physics. 25 (1953), 3:714.

[5] E. Bayro-Corrochano, A. M. Garza-Burgos, J. L Del-Valle-Padilla, Geometric intuitive techniques for human machine interaction in medical robotics, Inter. J. Social Robotics. 12 (1) (2020), 91-112.

[6] J. B. Literatura, Z historie linearni algebry, Matfyzpress (Praha), 2007.

[7] S. Breuils, V. Nozick, L. Fuchs, Garamon: a geometric algebra library generator, Advances in Applied Clifford Algebras. 29 (4) (2019), 1-41.

[8] C. C. Chevalley, The Algebraic Theory of Spinors, The Algebraic Theory of Spinors, Columbia University

Press, 1954.

[9] J. S. R. Chisholm, A. K. Common, Clifford Algebras and Their Applications in Mathematical Physics, Springer Science & Business Media, 2012.

[10] W. K. Clifford, Applications of grassmann’s extensive algebra, American Journal of Mathematics. 1 (4) (1878), 350-358.

[11] W. K. Clifford, William Kingdon Clifford, https://www.britannica.com/biography/Plato.

[12] E. B. Corrochano, G. Sobczyk, Geometric Algebra with Applications in Science and Engineering, Springer Science & Business Media, 2001.

[13] L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry, Elsevier, 2010.

[14] C. Doran, A. Lasenby, Geometric algebra for physicists, Cambridge, 2007.

[15] R. D'Auria, S. Ferrara, M. Lledo, V. Varadarajan, Spinor algebras, J. Geomet. Phys. 40 (2) (2001), 101-128.

[16] M. Eastwood, Notes on Conformal Differential Geometry, Proceedings of the 15th Winter School Geometry and Physics, 1996.

[17] G. Floystad, The exterior algebra and central notions in mathematics, Notices of the AMS. 62 (4) (2015), 364-371.

[18] J. W. Gibbs, Thermodynamics, Longmans, Green and Company, 1906.

[19] H. Hadfield, S. Achawal, J. Lasenby, A. Lasenby, B. Young, Exploring novel surface representations via an experimental ray-tracer in cga, Advances in Applied Clifford Algebras. 31 (2) (2021), 1-33.

[20] D. Hestenes, New Foundations for Classical Mechanics, Springer Science & Business Media, 2012.

[21] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Aalculus: A Unified Language for Mathematics and Physics, Springer Science & Business Media, 2012.

[22] A. Jelinek, A. Ligocki, L. Zalud, Robotic template library, arXiv:2107.00324, 2021.

[23] S. D. Keninck, Non-parametric Real time Rendering of Subspace Objects in Arbitrary Geometric Algebras, Computer Graphics International Conference, Springer, 2019.

[24] J. Lasenby, A. N Lasenby, C. Doran, A unified mathematical language for physics and engineering in the 21st century, Philosophical Transactions of the Royal Society of London. Series A. 358 (1765) (2000), 21-39.

[25] D. C. Lay, Linear Algebra and Its Applications, Pearson Education India, 2003.

[26] S. Lipschutz, M. Lipson, Schaum’s Outline of Theory and Problems of Linear Algebra, Schaum’s outline, 2001.

[27] A. Macdonald, Linear and Geometric Algebra, Alan Macdonald, 2010.

[28] W. Massey, Cross products of vectors in higher dimensional euclidean spaces, American Mathematical Monthly. 90 (10) (1983), 697-701.

[29] E. Meinrenken, Clifford algebras and the duflo isomorphism, arXiv preprint math/0304328, 2003.

[30] F. G. Montoya, R. Ba ´ nos, A. Alcayde, F. M. Arrabal-Campos, Geometric algebra for teaching ac circuit theory, Inter. J. Circuit Theory. Appl. 49 (11) (2021), 3473-3487.

[31] A. Mutlu, The essentials of clifford algebras with maple programming, Sakarya Uni. J. Sci. 25 (2) (2021), 610-619.

[32] S. R. Ramirez, J. A. J. Gonzalez, G. Sobczyk. From vectors to geometric algebra. arXiv e-prints, pages arXiv1802, 2018.

[33] M. C. Roldan, F. I. Martin Moren, A powerful tool for optimal control of energy systems in sustainable buildings: Distortion power ivector, Energies, 14 (2021), 8:2177.

[34] G. Schubring, H. grassmann, Extension Theory, American Mathematical Society, 2003.

[35] D Sen, D. Sen, Representation of physical quantities: From Scalars, Vectors, Tensors and Spinors to Multivectors, 2016, 10.13140/RG.2.2.25564.85128.

[36] G. Sobczyk. Geometric matrix algebra, Linear Algebra and its Applications. 429 (5-6) (2008), 1163-1173.

[37] G. Sobczyk. Geometrization of the real number system, http://www.garretstar.com, 2017.

[38] G. Sobczyk, Hyperbolic numbers revisited, http://www.garretstar.com/hyprevisited12-17-2017.pdf.

[39] G. Sobczyk, The hyperbolic number plane, The College Mathematics Journal. 26 (4) (1995), 268-280.

[40] G. Sommer, Geometric computing with Clifford algebras, Springer, 2001.

[41] P. G. Tait, An Elementary Treatise on Quaternions, University Press, 1890.

[42] S. Thiruvengadam, K. Miller, A geometric algebra based higher dimensional approximation method for statics and kinematics of robotic manipulators, Advances in Applied Clifford Algebras. 30 (1) (2020), 1-43.

[43] I. Todorov, Clifford algebras and spinors, arXiv:1106.3197, 2011.

[44] J. A. Vince, Geometric Algebra: An Algebraic System for Computer Games and Animation, Springer, 2009.

[45] S. Winitzki, Linear Algebra via Exterior Products, Lulu Press, 2009.

[46] J. Wu, M. Lopez, M. Liu, Y. Zhu, Linear geometric algebra rotor estimator for efficient mesh deformation, IET Cyber-systems and Robotics. 2 (2) (2020), 88-95.